There are 11 open security issues in trixie.
11 important issues:
- CVE-2025-2148:
A vulnerability was found in PyTorch 2.6.0+cu124. It has been declared as critical. Affected by this vulnerability is the function torch.ops.profiler._call_end_callbacks_on_jit_fut of the component Tuple Handler. The manipulation of the argument None leads to memory corruption. The attack can be launched remotely. The complexity of an attack is rather high. The exploitation appears to be difficult.
- CVE-2025-2149:
A vulnerability was found in PyTorch 2.6.0+cu124. It has been rated as problematic. Affected by this issue is the function nnq_Sigmoid of the component Quantized Sigmoid Module. The manipulation of the argument scale/zero_point leads to improper initialization. The attack needs to be approached locally. The complexity of an attack is rather high. The exploitation is known to be difficult. The exploit has been disclosed to the public and may be used.
- CVE-2025-2953:
A vulnerability, which was classified as problematic, has been found in PyTorch 2.6.0+cu124. Affected by this issue is the function torch.mkldnn_max_pool2d. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The real existence of this vulnerability is still doubted at the moment. The security policy of the project warns to use unknown models which might establish malicious effects.
- CVE-2025-2998:
A vulnerability was found in PyTorch 2.6.0. It has been declared as critical. Affected by this vulnerability is the function torch.nn.utils.rnn.pad_packed_sequence. The manipulation leads to memory corruption. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used.
- CVE-2025-2999:
A vulnerability was found in PyTorch 2.6.0. It has been rated as critical. Affected by this issue is the function torch.nn.utils.rnn.unpack_sequence. The manipulation leads to memory corruption. Attacking locally is a requirement. The exploit has been disclosed to the public and may be used.
- CVE-2025-3000:
A vulnerability classified as critical has been found in PyTorch 2.6.0. This affects the function torch.jit.script. The manipulation leads to memory corruption. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used.
- CVE-2025-3001:
A vulnerability classified as critical was found in PyTorch 2.6.0. This vulnerability affects the function torch.lstm_cell. The manipulation leads to memory corruption. The attack needs to be approached locally. The exploit has been disclosed to the public and may be used.
- CVE-2025-3121:
A vulnerability classified as problematic has been found in PyTorch 2.6.0. Affected is the function torch.jit.jit_module_from_flatbuffer. The manipulation leads to memory corruption. Local access is required to approach this attack. The exploit has been disclosed to the public and may be used.
- CVE-2025-3136:
A vulnerability, which was classified as problematic, has been found in PyTorch 2.6.0. This issue affects the function torch.cuda.memory.caching_allocator_delete of the file c10/cuda/CUDACachingAllocator.cpp. The manipulation leads to memory corruption. An attack has to be approached locally. The exploit has been disclosed to the public and may be used.
- CVE-2025-3730:
A vulnerability, which was classified as problematic, was found in PyTorch 2.6.0. Affected is the function torch.nn.functional.ctc_loss of the file aten/src/ATen/native/LossCTC.cpp. The manipulation leads to denial of service. An attack has to be approached locally. The exploit has been disclosed to the public and may be used. The real existence of this vulnerability is still doubted at the moment. The name of the patch is 46fc5d8e360127361211cb237d5f9eef0223e567. It is recommended to apply a patch to fix this issue. The security policy of the project warns to use unknown models which might establish malicious effects.
- CVE-2025-4287:
A vulnerability was found in PyTorch 2.6.0+cu124. It has been rated as problematic. Affected by this issue is the function torch.cuda.nccl.reduce of the file torch/cuda/nccl.py. The manipulation leads to denial of service. It is possible to launch the attack on the local host. The exploit has been disclosed to the public and may be used. The patch is identified as 5827d2061dcb4acd05ac5f8e65d8693a481ba0f5. It is recommended to apply a patch to fix this issue.