Source: dask Maintainer: Debian Python Modules Team Uploaders: Diane Trout Section: python Priority: optional Build-Depends: debhelper (>= 11), dh-python, dpkg-dev (>= 1.17.14), libjs-bootstrap, python-numpy-doc , python-pandas-doc , python3-all, python3-cloudpickle , python3-dask-sphinx-theme , python3-distributed , python3-numpydoc , python3-pandas (>= 0.19.0) , python3-partd , python3-scipy , python3-setuptools, python3-sphinx , python3-toolz , sphinx-common Standards-Version: 4.3.0 Vcs-Browser: https://salsa.debian.org/python-team/modules/dask Vcs-Git: https://salsa.debian.org/python-team/modules/dask.git Homepage: https://github.com/dask/dask Package: python3-dask Architecture: all Depends: ${misc:Depends}, ${python3:Depends}, python3-toolz, Recommends: python3-cloudpickle, python3-numpy, python3-pandas, python3-partd, python3-requests Suggests: ipython, python-dask-doc , python3-bcolz, python3-blosc, python3-boto, python3-distributed (>= 1.21), python3-graphviz, python3-h5py, python3-psutil, python3-scipy, python3-skimage, python3-sklearn, python3-sqlalchemy, python3-tables Description: Minimal task scheduling abstraction for Python 3 Dask is a flexible parallel computing library for analytics, containing two components. . 1. Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but optimized for interactive computational workloads. 2. "Big Data" collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of the dynamic task schedulers. . This contains the Python 3 version. Package: python-dask-doc Architecture: all Section: doc Depends: ${misc:Depends}, ${sphinxdoc:Depends}, libjs-mathjax, Built-Using: ${sphinxdoc:Built-Using} Description: Minimal task scheduling abstraction documentation Dask is a flexible parallel computing library for analytics, containing two components. . 1. Dynamic task scheduling optimized for computation. This is similar to Airflow, Luigi, Celery, or Make, but optimized for interactive computational workloads. 2. "Big Data" collections like parallel arrays, dataframes, and lists that extend common interfaces like NumPy, Pandas, or Python iterators to larger-than-memory or distributed environments. These parallel collections run on top of the dynamic task schedulers. . This contains the documentation Build-Profiles: