Source: r-cran-factominer Section: gnu-r Priority: optional Maintainer: Debian R Packages Maintainers Uploaders: Dylan Aïssi Vcs-Browser: https://salsa.debian.org/r-pkg-team/r-cran-factominer Vcs-Git: https://salsa.debian.org/r-pkg-team/r-cran-factominer.git Homepage: https://cran.r-project.org/package=FactoMineR Standards-Version: 4.6.2 Rules-Requires-Root: no Build-Depends: debhelper-compat (= 13), dh-r, r-base-dev, r-cran-car, r-cran-cluster, r-cran-dt, r-cran-ellipse, r-cran-emmeans, r-cran-flashclust, r-cran-lattice, r-cran-leaps, r-cran-mass, r-cran-multcompview, r-cran-scatterplot3d, r-cran-ggplot2, r-cran-ggrepel Testsuite: autopkgtest-pkg-r Package: r-cran-factominer Architecture: any Depends: ${R:Depends}, ${shlibs:Depends}, ${misc:Depends} Recommends: ${R:Recommends} Suggests: ${R:Suggests} Description: Multivariate Exploratory Data Analysis and Data Mining Exploratory data analysis methods to summarize, visualize and describe datasets. The main principal component methods are available, those with the largest potential in terms of applications: principal component analysis (PCA) when variables are quantitative, correspondence analysis (CA) and multiple correspondence analysis (MCA) when variables are categorical, Multiple Factor Analysis when variables are structured in groups, etc. and hierarchical cluster analysis.