Source: shogun
Section: science
Priority: optional
Maintainer: Debian QA Group
Build-Depends: libatlas-base-dev [!powerpc !alpha !arm !armel !armhf !sh4] | liblapack-dev,
libeigen3-dev, debhelper (>= 9), libreadline-dev | libreadline5-dev, ghostscript,
libblas-dev, doxygen-latex, graphviz, libglpk-dev, libnlopt-dev, libbsd-dev,
liblzo2-dev, zlib1g-dev, liblzma-dev, libxml2-dev, libjson-c-dev, cmake,
libarpack2-dev, libsnappy-dev, libhdf5-dev (>= 1.8.8~),
libprotobuf-dev, protobuf-compiler, libcurl4-gnutls-dev, libbz2-dev, libcolpack-dev,
python
Standards-Version: 3.9.5
Homepage: http://www.shogun-toolbox.org
Vcs-Svn: http://bollin.googlecode.com/svn/shogun/trunk/
Vcs-Browser: http://bollin.googlecode.com/svn/shogun/trunk/
Package: libshogun16
Conflicts: libshogunui6, libshogunui5, libshogunui4, libshogunui3,
libshogunui2, libshogunui1, libshogunui0
Architecture: any
Section: libs
Depends: ${shlibs:Depends}, ${misc:Depends}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the core
library with the machine learning methods and ui helpers all interfaces are
based on.
Package: libshogun-dev
Section: libdevel
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}, libshogun16 (= ${binary:Version})
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package
includes the developer files required to create stand-a-lone executables.
Package: shogun-doc-en
Conflicts: shogun-doc
Replaces: shogun-doc
Section: doc
Architecture: all
Recommends: libshogun-dev
Depends: ${misc:Depends}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the English
user and developer documentation.
Package: shogun-doc-cn
Section: doc
Architecture: all
Recommends: libshogun-dev
Depends: ${misc:Depends}
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the
Chinese user and developer documentation.
Package: libshogun-dbg
Breaks: shogun-dbg
Replaces: shogun-dbg
Section: debug
Priority: extra
Architecture: any
Depends: ${misc:Depends}, libshogun16 (= ${binary:Version})
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This package
contains debug symbols for all interfaces.
Package: shogun-cmdline-static
Conflicts: shogun-cmdline
Replaces: shogun-cmdline
Architecture: any
Depends: ${shlibs:Depends}, ${misc:Depends}, libshogun16 (= ${binary:Version})
Description: Large Scale Machine Learning Toolbox
SHOGUN - is a new machine learning toolbox with focus on large scale kernel
methods and especially on Support Vector Machines (SVM) with focus to
bioinformatics. It provides a generic SVM object interfacing to several
different SVM implementations. Each of the SVMs can be combined with a variety
of the many kernels implemented. It can deal with weighted linear combination
of a number of sub-kernels, each of which not necessarily working on the same
domain, where an optimal sub-kernel weighting can be learned using Multiple
Kernel Learning. Apart from SVM 2-class classification and regression
problems, a number of linear methods like Linear Discriminant Analysis (LDA),
Linear Programming Machine (LPM), (Kernel) Perceptrons and also algorithms to
train hidden markov models are implemented. The input feature-objects can be
dense, sparse or strings and of type int/short/double/char and can be
converted into different feature types. Chains of preprocessors (e.g.
substracting the mean) can be attached to each feature object allowing for
on-the-fly pre-processing.
.
SHOGUN comes in different flavours, a stand-a-lone version and also with
interfaces to Matlab(tm), R, Octave, Readline and Python. This is the Readline
package.