There are 554 open security issues in bookworm.
546 important issues:
- CVE-2020-0347:
In iptables, there is a possible out of bounds write due to an incorrect bounds check. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.Product: AndroidVersions: Android-11Android ID: A-136658008
- CVE-2021-3847:
An unauthorized access to the execution of the setuid file with capabilities flaw in the Linux kernel OverlayFS subsystem was found in the way user copying a capable file from a nosuid mount into another mount. A local user could use this flaw to escalate their privileges on the system.
- CVE-2021-3864:
A flaw was found in the way the dumpable flag setting was handled when certain SUID binaries executed its descendants. The prerequisite is a SUID binary that sets real UID equal to effective UID, and real GID equal to effective GID. The descendant will then have a dumpable value set to 1. As a result, if the descendant process crashes and core_pattern is set to a relative value, its core dump is stored in the current directory with uid:gid permissions. An unprivileged local user with eligible root SUID binary could use this flaw to place core dumps into root-owned directories, potentially resulting in escalation of privileges.
- CVE-2023-0597:
A flaw possibility of memory leak in the Linux kernel cpu_entry_area mapping of X86 CPU data to memory was found in the way user can guess location of exception stack(s) or other important data. A local user could use this flaw to get access to some important data with expected location in memory.
- CVE-2023-3397:
A race condition occurred between the functions lmLogClose and txEnd in JFS, in the Linux Kernel, executed in different threads. This flaw allows a local attacker with normal user privileges to crash the system or leak internal kernel information.
- CVE-2023-4010:
A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service.
- CVE-2023-4133:
A use-after-free vulnerability was found in the cxgb4 driver in the Linux kernel. The bug occurs when the cxgb4 device is detaching due to a possible rearming of the flower_stats_timer from the work queue. This flaw allows a local user to crash the system, causing a denial of service condition.
- CVE-2023-6039:
A use-after-free flaw was found in lan78xx_disconnect in drivers/net/usb/lan78xx.c in the network sub-component, net/usb/lan78xx in the Linux Kernel. This flaw allows a local attacker to crash the system when the LAN78XX USB device detaches.
- CVE-2023-6240:
A Marvin vulnerability side-channel leakage was found in the RSA decryption operation in the Linux Kernel. This issue may allow a network attacker to decrypt ciphertexts or forge signatures, limiting the services that use that private key.
- CVE-2024-2193:
A Speculative Race Condition (SRC) vulnerability that impacts modern CPU architectures supporting speculative execution (related to Spectre V1) has been disclosed. An unauthenticated attacker can exploit this vulnerability to disclose arbitrary data from the CPU using race conditions to access the speculative executable code paths.
- CVE-2025-0927:
- CVE-2020-36694:
An issue was discovered in netfilter in the Linux kernel before 5.10. There can be a use-after-free in the packet processing context, because the per-CPU sequence count is mishandled during concurrent iptables rules replacement. This could be exploited with the CAP_NET_ADMIN capability in an unprivileged namespace. NOTE: cc00bca was reverted in 5.12.
- CVE-2021-47658:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: fix a potential gpu_metrics_table memory leak Memory is allocated for gpu_metrics_table in renoir_init_smc_tables(), but not freed in int smu_v12_0_fini_smc_tables(). Free it!
- CVE-2023-21264:
In multiple functions of mem_protect.c, there is a possible way to access hypervisor memory due to a memory access check in the wrong place. This could lead to local escalation of privilege with System execution privileges needed. User interaction is not needed for exploitation.
- CVE-2023-23005:
In the Linux kernel before 6.2, mm/memory-tiers.c misinterprets the alloc_memory_type return value (expects it to be NULL in the error case, whereas it is actually an error pointer). NOTE: this is disputed by third parties because there are no realistic cases in which a user can cause the alloc_memory_type error case to be reached.
- CVE-2023-31082:
An issue was discovered in drivers/tty/n_gsm.c in the Linux kernel 6.2. There is a sleeping function called from an invalid context in gsmld_write, which will block the kernel. Note: This has been disputed by 3rd parties as not a valid vulnerability.
- CVE-2023-37454:
An issue was discovered in the Linux kernel through 6.4.2. A crafted UDF filesystem image causes a use-after-free write operation in the udf_put_super and udf_close_lvid functions in fs/udf/super.c. NOTE: the suse.com reference has a different perspective about this.
- CVE-2023-52452:
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix accesses to uninit stack slots Privileged programs are supposed to be able to read uninitialized stack memory (ever since 6715df8d5) but, before this patch, these accesses were permitted inconsistently. In particular, accesses were permitted above state->allocated_stack, but not below it. In other words, if the stack was already "large enough", the access was permitted, but otherwise the access was rejected instead of being allowed to "grow the stack". This undesired rejection was happening in two places: - in check_stack_slot_within_bounds() - in check_stack_range_initialized() This patch arranges for these accesses to be permitted. A bunch of tests that were relying on the old rejection had to change; all of them were changed to add also run unprivileged, in which case the old behavior persists. One tests couldn't be updated - global_func16 - because it can't run unprivileged for other reasons. This patch also fixes the tracking of the stack size for variable-offset reads. This second fix is bundled in the same commit as the first one because they're inter-related. Before this patch, writes to the stack using registers containing a variable offset (as opposed to registers with fixed, known values) were not properly contributing to the function's needed stack size. As a result, it was possible for a program to verify, but then to attempt to read out-of-bounds data at runtime because a too small stack had been allocated for it. Each function tracks the size of the stack it needs in bpf_subprog_info.stack_depth, which is maintained by update_stack_depth(). For regular memory accesses, check_mem_access() was calling update_state_depth() but it was passing in only the fixed part of the offset register, ignoring the variable offset. This was incorrect; the minimum possible value of that register should be used instead. This tracking is now fixed by centralizing the tracking of stack size in grow_stack_state(), and by lifting the calls to grow_stack_state() to check_stack_access_within_bounds() as suggested by Andrii. The code is now simpler and more convincingly tracks the correct maximum stack size. check_stack_range_initialized() can now rely on enough stack having been allocated for the access; this helps with the fix for the first issue. A few tests were changed to also check the stack depth computation. The one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.
- CVE-2023-52485:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before sending a command [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] For functions that execute within a DC context or DC lock we can wrap the direct calls to dm_execute_dmub_cmd/list with code that exits idle power optimizations and reallows once we're done with the command submission on success. For DM direct submissions the DM will need to manage the enter/exit sequencing manually. We cannot invoke a DMCUB command directly within the DM execution helper or we can deadlock.
- CVE-2023-52586:
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add mutex lock in control vblank irq Add a mutex lock to control vblank irq to synchronize vblank enable/disable operations happening from different threads to prevent race conditions while registering/unregistering the vblank irq callback. v4: -Removed vblank_ctl_lock from dpu_encoder_virt, so it is only a parameter of dpu_encoder_phys. -Switch from atomic refcnt to a simple int counter as mutex has now been added v3: Mistakenly did not change wording in last version. It is done now. v2: Slightly changed wording of commit message Patchwork: https://patchwork.freedesktop.org/patch/571854/
- CVE-2023-52590:
In the Linux kernel, the following vulnerability has been resolved: ocfs2: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change ocfs2 rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
- CVE-2023-52591:
In the Linux kernel, the following vulnerability has been resolved: reiserfs: Avoid touching renamed directory if parent does not change The VFS will not be locking moved directory if its parent does not change. Change reiserfs rename code to avoid touching renamed directory if its parent does not change as without locking that can corrupt the filesystem.
- CVE-2023-52596:
In the Linux kernel, the following vulnerability has been resolved: sysctl: Fix out of bounds access for empty sysctl registers When registering tables to the sysctl subsystem there is a check to see if header is a permanently empty directory (used for mounts). This check evaluates the first element of the ctl_table. This results in an out of bounds evaluation when registering empty directories. The function register_sysctl_mount_point now passes a ctl_table of size 1 instead of size 0. It now relies solely on the type to identify a permanently empty register. Make sure that the ctl_table has at least one element before testing for permanent emptiness.
- CVE-2023-52624:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before executing GPINT commands [Why] DMCUB can be in idle when we attempt to interface with the HW through the GPINT mailbox resulting in a system hang. [How] Add dc_wake_and_execute_gpint() to wrap the wake, execute, sleep sequence. If the GPINT executes successfully then DMCUB will be put back into sleep after the optional response is returned. It functions similar to the inbox command interface.
- CVE-2023-52625:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Refactor DMCUB enter/exit idle interface [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] We need to exit out of the idle state prior to sending a command, but the process that performs the exit also invokes a command itself. Fixing this issue involves the following: 1. Using a software state to track whether or not we need to start the process to exit idle or notify idle. It's possible for the hardware to have exited an idle state without driver knowledge, but entering one is always restricted to a driver allow - which makes the SW state vs HW state mismatch issue purely one of optimization, which should seldomly be hit, if at all. 2. Refactor any instances of exit/notify idle to use a single wrapper that maintains this SW state. This works simialr to dc_allow_idle_optimizations, but works at the DMCUB level and makes sure the state is marked prior to any notify/exit idle so we don't enter an infinite loop. 3. Make sure we exit out of idle prior to sending any commands or waiting for DMCUB idle. This patch takes care of 1/2. A future patch will take care of wrapping DMCUB command submission with calls to this new interface.
- CVE-2023-52629:
In the Linux kernel, the following vulnerability has been resolved: sh: push-switch: Reorder cleanup operations to avoid use-after-free bug The original code puts flush_work() before timer_shutdown_sync() in switch_drv_remove(). Although we use flush_work() to stop the worker, it could be rescheduled in switch_timer(). As a result, a use-after-free bug can occur. The details are shown below: (cpu 0) | (cpu 1) switch_drv_remove() | flush_work() | ... | switch_timer // timer | schedule_work(&psw->work) timer_shutdown_sync() | ... | switch_work_handler // worker kfree(psw) // free | | psw->state = 0 // use This patch puts timer_shutdown_sync() before flush_work() to mitigate the bugs. As a result, the worker and timer will be stopped safely before the deallocate operations.
- CVE-2023-52648:
In the Linux kernel, the following vulnerability has been resolved: drm/vmwgfx: Unmap the surface before resetting it on a plane state Switch to a new plane state requires unreferencing of all held surfaces. In the work required for mob cursors the mapped surfaces started being cached but the variable indicating whether the surface is currently mapped was not being reset. This leads to crashes as the duplicated state, incorrectly, indicates the that surface is mapped even when no surface is present. That's because after unreferencing the surface it's perfectly possible for the plane to be backed by a bo instead of a surface. Reset the surface mapped flag when unreferencing the plane state surface to fix null derefs in cleanup. Fixes crashes in KDE KWin 6.0 on Wayland: Oops: 0000 [#1] PREEMPT SMP PTI CPU: 4 PID: 2533 Comm: kwin_wayland Not tainted 6.7.0-rc3-vmwgfx #2 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx] Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f> RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600 RBP: ffff969d4143dc50 R08: 0000000000000000 R09: ffffb6b98216f920 R10: 0000000000000003 R11: ffff969e7feb3b10 R12: 0000000000000000 R13: 0000000000000000 R14: 000000000000027b R15: ffff969d49c9fc00 FS: 00007f1e8f1b4180(0000) GS:ffff969e75f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000028 CR3: 0000000104006004 CR4: 00000000003706f0 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x171/0x4e0 ? exc_page_fault+0x7f/0x180 ? asm_exc_page_fault+0x26/0x30 ? vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx] drm_atomic_helper_cleanup_planes+0x9b/0xc0 commit_tail+0xd1/0x130 drm_atomic_helper_commit+0x11a/0x140 drm_atomic_commit+0x97/0xd0 ? __pfx___drm_printfn_info+0x10/0x10 drm_atomic_helper_update_plane+0xf5/0x160 drm_mode_cursor_universal+0x10e/0x270 drm_mode_cursor_common+0x102/0x230 ? __pfx_drm_mode_cursor2_ioctl+0x10/0x10 drm_ioctl_kernel+0xb2/0x110 drm_ioctl+0x26d/0x4b0 ? __pfx_drm_mode_cursor2_ioctl+0x10/0x10 ? __pfx_drm_ioctl+0x10/0x10 vmw_generic_ioctl+0xa4/0x110 [vmwgfx] __x64_sys_ioctl+0x94/0xd0 do_syscall_64+0x61/0xe0 ? __x64_sys_ioctl+0xaf/0xd0 ? syscall_exit_to_user_mode+0x2b/0x40 ? do_syscall_64+0x70/0xe0 ? __x64_sys_ioctl+0xaf/0xd0 ? syscall_exit_to_user_mode+0x2b/0x40 ? do_syscall_64+0x70/0xe0 ? exc_page_fault+0x7f/0x180 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f1e93f279ed Code: 04 25 28 00 00 00 48 89 45 c8 31 c0 48 8d 45 10 c7 45 b0 10 00 00 00 48 89 45 b8 48 8d 45 d0 48 89 45 c0 b8 10 00 00 00 0f 05 <89> c2 3d 00 f0 ff f> RSP: 002b:00007ffca0faf600 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 000055db876ed2c0 RCX: 00007f1e93f279ed RDX: 00007ffca0faf6c0 RSI: 00000000c02464bb RDI: 0000000000000015 RBP: 00007ffca0faf650 R08: 000055db87184010 R09: 0000000000000007 R10: 000055db886471a0 R11: 0000000000000246 R12: 00007ffca0faf6c0 R13: 00000000c02464bb R14: 0000000000000015 R15: 00007ffca0faf790 </TASK> Modules linked in: snd_seq_dummy snd_hrtimer nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_ine> CR2: 0000000000000028 ---[ end trace 0000000000000000 ]--- RIP: 0010:vmw_du_cursor_plane_cleanup_fb+0x124/0x140 [vmwgfx] Code: 00 00 00 75 3a 48 83 c4 10 5b 5d c3 cc cc cc cc 48 8b b3 a8 00 00 00 48 c7 c7 99 90 43 c0 e8 93 c5 db ca 48 8b 83 a8 00 00 00 <48> 8b 78 28 e8 e3 f> RSP: 0018:ffffb6b98216fa80 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff969d84cdcb00 RCX: 0000000000000027 RDX: 0000000000000000 RSI: 0000000000000001 RDI: ffff969e75f21600 RBP: ffff969d4143 ---truncated---
- CVE-2023-52653:
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: fix a memleak in gss_import_v2_context The ctx->mech_used.data allocated by kmemdup is not freed in neither gss_import_v2_context nor it only caller gss_krb5_import_sec_context, which frees ctx on error. Thus, this patch reform the last call of gss_import_v2_context to the gss_krb5_import_ctx_v2, preventing the memleak while keepping the return formation.
- CVE-2023-52658:
In the Linux kernel, the following vulnerability has been resolved: Revert "net/mlx5: Block entering switchdev mode with ns inconsistency" This reverts commit 662404b24a4c4d839839ed25e3097571f5938b9b. The revert is required due to the suspicion it is not good for anything and cause crash.
- CVE-2023-52671:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix hang/underflow when transitioning to ODM4:1 [Why] Under some circumstances, disabling an OPTC and attempting to reclaim its OPP(s) for a different OPTC could cause a hang/underflow due to OPPs not being properly disconnected from the disabled OPTC. [How] Ensure that all OPPs are unassigned from an OPTC when it gets disabled.
- CVE-2023-52673:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix a debugfs null pointer error [WHY & HOW] Check whether get_subvp_en() callback exists before calling it.
- CVE-2023-52676:
In the Linux kernel, the following vulnerability has been resolved: bpf: Guard stack limits against 32bit overflow This patch promotes the arithmetic around checking stack bounds to be done in the 64-bit domain, instead of the current 32bit. The arithmetic implies adding together a 64-bit register with a int offset. The register was checked to be below 1<<29 when it was variable, but not when it was fixed. The offset either comes from an instruction (in which case it is 16 bit), from another register (in which case the caller checked it to be below 1<<29 [1]), or from the size of an argument to a kfunc (in which case it can be a u32 [2]). Between the register being inconsistently checked to be below 1<<29, and the offset being up to an u32, it appears that we were open to overflowing the `int`s which were currently used for arithmetic. [1] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L7494-L7498 [2] https://github.com/torvalds/linux/blob/815fb87b753055df2d9e50f6cd80eb10235fe3e9/kernel/bpf/verifier.c#L11904
- CVE-2023-52751:
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free in smb2_query_info_compound() The following UAF was triggered when running fstests generic/072 with KASAN enabled against Windows Server 2022 and mount options 'multichannel,max_channels=2,vers=3.1.1,mfsymlinks,noperm' BUG: KASAN: slab-use-after-free in smb2_query_info_compound+0x423/0x6d0 [cifs] Read of size 8 at addr ffff888014941048 by task xfs_io/27534 CPU: 0 PID: 27534 Comm: xfs_io Not tainted 6.6.0-rc7 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack_lvl+0x4a/0x80 print_report+0xcf/0x650 ? srso_alias_return_thunk+0x5/0x7f ? srso_alias_return_thunk+0x5/0x7f ? __phys_addr+0x46/0x90 kasan_report+0xda/0x110 ? smb2_query_info_compound+0x423/0x6d0 [cifs] ? smb2_query_info_compound+0x423/0x6d0 [cifs] smb2_query_info_compound+0x423/0x6d0 [cifs] ? __pfx_smb2_query_info_compound+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __stack_depot_save+0x39/0x480 ? kasan_save_stack+0x33/0x60 ? kasan_set_track+0x25/0x30 ? ____kasan_slab_free+0x126/0x170 smb2_queryfs+0xc2/0x2c0 [cifs] ? __pfx_smb2_queryfs+0x10/0x10 [cifs] ? __pfx___lock_acquire+0x10/0x10 smb311_queryfs+0x210/0x220 [cifs] ? __pfx_smb311_queryfs+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __lock_acquire+0x480/0x26c0 ? lock_release+0x1ed/0x640 ? srso_alias_return_thunk+0x5/0x7f ? do_raw_spin_unlock+0x9b/0x100 cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 ? __pfx___do_sys_fstatfs+0x10/0x10 ? srso_alias_return_thunk+0x5/0x7f ? lockdep_hardirqs_on_prepare+0x136/0x200 ? srso_alias_return_thunk+0x5/0x7f do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Allocated by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 __kasan_kmalloc+0x8f/0xa0 open_cached_dir+0x71b/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] smb311_queryfs+0x210/0x220 [cifs] cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Freed by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 ____kasan_slab_free+0x126/0x170 slab_free_freelist_hook+0xd0/0x1e0 __kmem_cache_free+0x9d/0x1b0 open_cached_dir+0xff5/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] This is a race between open_cached_dir() and cached_dir_lease_break() where the cache entry for the open directory handle receives a lease break while creating it. And before returning from open_cached_dir(), we put the last reference of the new @cfid because of !@cfid->has_lease. Besides the UAF, while running xfstests a lot of missed lease breaks have been noticed in tests that run several concurrent statfs(2) calls on those cached fids CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 00000000715bfe83 len 108 CIFS: VFS: Dump pending requests: CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 000000005aa7316e len 108 ... To fix both, in open_cached_dir() ensure that @cfid->has_lease is set right before sending out compounded request so that any potential lease break will be get processed by demultiplex thread while we're still caching @cfid. And, if open failed for some reason, re-check @cfid->has_lease to decide whether or not put lease reference.
- CVE-2023-52761:
In the Linux kernel, the following vulnerability has been resolved: riscv: VMAP_STACK overflow detection thread-safe commit 31da94c25aea ("riscv: add VMAP_STACK overflow detection") added support for CONFIG_VMAP_STACK. If overflow is detected, CPU switches to `shadow_stack` temporarily before switching finally to per-cpu `overflow_stack`. If two CPUs/harts are racing and end up in over flowing kernel stack, one or both will end up corrupting each other state because `shadow_stack` is not per-cpu. This patch optimizes per-cpu overflow stack switch by directly picking per-cpu `overflow_stack` and gets rid of `shadow_stack`. Following are the changes in this patch - Defines an asm macro to obtain per-cpu symbols in destination register. - In entry.S, when overflow is detected, per-cpu overflow stack is located using per-cpu asm macro. Computing per-cpu symbol requires a temporary register. x31 is saved away into CSR_SCRATCH (CSR_SCRATCH is anyways zero since we're in kernel). Please see Links for additional relevant disccussion and alternative solution. Tested by `echo EXHAUST_STACK > /sys/kernel/debug/provoke-crash/DIRECT` Kernel crash log below Insufficient stack space to handle exception!/debug/provoke-crash/DIRECT Task stack: [0xff20000010a98000..0xff20000010a9c000] Overflow stack: [0xff600001f7d98370..0xff600001f7d99370] CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) epc : __memset+0x60/0xfc ra : recursive_loop+0x48/0xc6 [lkdtm] epc : ffffffff808de0e4 ra : ffffffff0163a752 sp : ff20000010a97e80 gp : ffffffff815c0330 tp : ff600000820ea280 t0 : ff20000010a97e88 t1 : 000000000000002e t2 : 3233206874706564 s0 : ff20000010a982b0 s1 : 0000000000000012 a0 : ff20000010a97e88 a1 : 0000000000000000 a2 : 0000000000000400 a3 : ff20000010a98288 a4 : 0000000000000000 a5 : 0000000000000000 a6 : fffffffffffe43f0 a7 : 00007fffffffffff s2 : ff20000010a97e88 s3 : ffffffff01644680 s4 : ff20000010a9be90 s5 : ff600000842ba6c0 s6 : 00aaaaaac29e42b0 s7 : 00fffffff0aa3684 s8 : 00aaaaaac2978040 s9 : 0000000000000065 s10: 00ffffff8a7cad10 s11: 00ffffff8a76a4e0 t3 : ffffffff815dbaf4 t4 : ffffffff815dbaf4 t5 : ffffffff815dbab8 t6 : ff20000010a9bb48 status: 0000000200000120 badaddr: ff20000010a97e88 cause: 000000000000000f Kernel panic - not syncing: Kernel stack overflow CPU: 1 PID: 205 Comm: bash Not tainted 6.1.0-rc2-00001-g328a1f96f7b9 #34 Hardware name: riscv-virtio,qemu (DT) Call Trace: [<ffffffff80006754>] dump_backtrace+0x30/0x38 [<ffffffff808de798>] show_stack+0x40/0x4c [<ffffffff808ea2a8>] dump_stack_lvl+0x44/0x5c [<ffffffff808ea2d8>] dump_stack+0x18/0x20 [<ffffffff808dec06>] panic+0x126/0x2fe [<ffffffff800065ea>] walk_stackframe+0x0/0xf0 [<ffffffff0163a752>] recursive_loop+0x48/0xc6 [lkdtm] SMP: stopping secondary CPUs ---[ end Kernel panic - not syncing: Kernel stack overflow ]---
- CVE-2023-52770:
In the Linux kernel, the following vulnerability has been resolved: f2fs: split initial and dynamic conditions for extent_cache Let's allocate the extent_cache tree without dynamic conditions to avoid a missing condition causing a panic as below. # create a file w/ a compressed flag # disable the compression # panic while updating extent_cache F2FS-fs (dm-64): Swapfile: last extent is not aligned to section F2FS-fs (dm-64): Swapfile (3) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(2097152 * N) Adding 124996k swap on ./swap-file. Priority:0 extents:2 across:17179494468k ================================================================== BUG: KASAN: null-ptr-deref in instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline] BUG: KASAN: null-ptr-deref in atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline] BUG: KASAN: null-ptr-deref in queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline] BUG: KASAN: null-ptr-deref in __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline] BUG: KASAN: null-ptr-deref in _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295 Write of size 4 at addr 0000000000000030 by task syz-executor154/3327 CPU: 0 PID: 3327 Comm: syz-executor154 Tainted: G O 5.10.185 #1 Hardware name: emulation qemu-x86/qemu-x86, BIOS 2023.01-21885-gb3cc1cd24d 01/01/2023 Call Trace: __dump_stack out/common/lib/dump_stack.c:77 [inline] dump_stack_lvl+0x17e/0x1c4 out/common/lib/dump_stack.c:118 __kasan_report+0x16c/0x260 out/common/mm/kasan/report.c:415 kasan_report+0x51/0x70 out/common/mm/kasan/report.c:428 kasan_check_range+0x2f3/0x340 out/common/mm/kasan/generic.c:186 __kasan_check_write+0x14/0x20 out/common/mm/kasan/shadow.c:37 instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline] atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline] queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline] __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline] _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295 __drop_extent_tree+0xdf/0x2f0 out/common/fs/f2fs/extent_cache.c:1155 f2fs_drop_extent_tree+0x17/0x30 out/common/fs/f2fs/extent_cache.c:1172 f2fs_insert_range out/common/fs/f2fs/file.c:1600 [inline] f2fs_fallocate+0x19fd/0x1f40 out/common/fs/f2fs/file.c:1764 vfs_fallocate+0x514/0x9b0 out/common/fs/open.c:310 ksys_fallocate out/common/fs/open.c:333 [inline] __do_sys_fallocate out/common/fs/open.c:341 [inline] __se_sys_fallocate out/common/fs/open.c:339 [inline] __x64_sys_fallocate+0xb8/0x100 out/common/fs/open.c:339 do_syscall_64+0x35/0x50 out/common/arch/x86/entry/common.c:46
- CVE-2023-52771:
In the Linux kernel, the following vulnerability has been resolved: cxl/port: Fix delete_endpoint() vs parent unregistration race The CXL subsystem, at cxl_mem ->probe() time, establishes a lineage of ports (struct cxl_port objects) between an endpoint and the root of a CXL topology. Each port including the endpoint port is attached to the cxl_port driver. Given that setup, it follows that when either any port in that lineage goes through a cxl_port ->remove() event, or the memdev goes through a cxl_mem ->remove() event. The hierarchy below the removed port, or the entire hierarchy if the memdev is removed needs to come down. The delete_endpoint() callback is careful to check whether it is being called to tear down the hierarchy, or if it is only being called to teardown the memdev because an ancestor port is going through ->remove(). That care needs to take the device_lock() of the endpoint's parent. Which requires 2 bugs to be fixed: 1/ A reference on the parent is needed to prevent use-after-free scenarios like this signature: BUG: spinlock bad magic on CPU#0, kworker/u56:0/11 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS edk2-20230524-3.fc38 05/24/2023 Workqueue: cxl_port detach_memdev [cxl_core] RIP: 0010:spin_bug+0x65/0xa0 Call Trace: do_raw_spin_lock+0x69/0xa0 __mutex_lock+0x695/0xb80 delete_endpoint+0xad/0x150 [cxl_core] devres_release_all+0xb8/0x110 device_unbind_cleanup+0xe/0x70 device_release_driver_internal+0x1d2/0x210 detach_memdev+0x15/0x20 [cxl_core] process_one_work+0x1e3/0x4c0 worker_thread+0x1dd/0x3d0 2/ In the case of RCH topologies, the parent device that needs to be locked is not always @port->dev as returned by cxl_mem_find_port(), use endpoint->dev.parent instead.
- CVE-2023-52797:
In the Linux kernel, the following vulnerability has been resolved: drivers: perf: Check find_first_bit() return value We must check the return value of find_first_bit() before using the return value as an index array since it happens to overflow the array and then panic: [ 107.318430] Kernel BUG [#1] [ 107.319434] CPU: 3 PID: 1238 Comm: kill Tainted: G E 6.6.0-rc6ubuntu-defconfig #2 [ 107.319465] Hardware name: riscv-virtio,qemu (DT) [ 107.319551] epc : pmu_sbi_ovf_handler+0x3a4/0x3ae [ 107.319840] ra : pmu_sbi_ovf_handler+0x52/0x3ae [ 107.319868] epc : ffffffff80a0a77c ra : ffffffff80a0a42a sp : ffffaf83fecda350 [ 107.319884] gp : ffffffff823961a8 tp : ffffaf8083db1dc0 t0 : ffffaf83fecda480 [ 107.319899] t1 : ffffffff80cafe62 t2 : 000000000000ff00 s0 : ffffaf83fecda520 [ 107.319921] s1 : ffffaf83fecda380 a0 : 00000018fca29df0 a1 : ffffffffffffffff [ 107.319936] a2 : 0000000001073734 a3 : 0000000000000004 a4 : 0000000000000000 [ 107.319951] a5 : 0000000000000040 a6 : 000000001d1c8774 a7 : 0000000000504d55 [ 107.319965] s2 : ffffffff82451f10 s3 : ffffffff82724e70 s4 : 000000000000003f [ 107.319980] s5 : 0000000000000011 s6 : ffffaf8083db27c0 s7 : 0000000000000000 [ 107.319995] s8 : 0000000000000001 s9 : 00007fffb45d6558 s10: 00007fffb45d81a0 [ 107.320009] s11: ffffaf7ffff60000 t3 : 0000000000000004 t4 : 0000000000000000 [ 107.320023] t5 : ffffaf7f80000000 t6 : ffffaf8000000000 [ 107.320037] status: 0000000200000100 badaddr: 0000000000000000 cause: 0000000000000003 [ 107.320081] [<ffffffff80a0a77c>] pmu_sbi_ovf_handler+0x3a4/0x3ae [ 107.320112] [<ffffffff800b42d0>] handle_percpu_devid_irq+0x9e/0x1a0 [ 107.320131] [<ffffffff800ad92c>] generic_handle_domain_irq+0x28/0x36 [ 107.320148] [<ffffffff8065f9f8>] riscv_intc_irq+0x36/0x4e [ 107.320166] [<ffffffff80caf4a0>] handle_riscv_irq+0x54/0x86 [ 107.320189] [<ffffffff80cb0036>] do_irq+0x64/0x96 [ 107.320271] Code: 85a6 855e b097 ff7f 80e7 9220 b709 9002 4501 bbd9 (9002) 6097 [ 107.320585] ---[ end trace 0000000000000000 ]--- [ 107.320704] Kernel panic - not syncing: Fatal exception in interrupt [ 107.320775] SMP: stopping secondary CPUs [ 107.321219] Kernel Offset: 0x0 from 0xffffffff80000000 [ 107.333051] ---[ end Kernel panic - not syncing: Fatal exception in interrupt ]---
- CVE-2023-52857:
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix coverity issue with unintentional integer overflow 1. Instead of multiplying 2 variable of different types. Change to assign a value of one variable and then multiply the other variable. 2. Add a int variable for multiplier calculation instead of calculating different types multiplier with dma_addr_t variable directly.
- CVE-2023-52888:
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Only free buffer VA that is not NULL In the MediaTek vcodec driver, while mtk_vcodec_mem_free() is mostly called only when the buffer to free exists, there are some instances that didn't do the check and triggered warnings in practice. We believe those checks were forgotten unintentionally. Add the checks back to fix the warnings.
- CVE-2023-52920:
In the Linux kernel, the following vulnerability has been resolved: bpf: support non-r10 register spill/fill to/from stack in precision tracking Use instruction (jump) history to record instructions that performed register spill/fill to/from stack, regardless if this was done through read-only r10 register, or any other register after copying r10 into it *and* potentially adjusting offset. To make this work reliably, we push extra per-instruction flags into instruction history, encoding stack slot index (spi) and stack frame number in extra 10 bit flags we take away from prev_idx in instruction history. We don't touch idx field for maximum performance, as it's checked most frequently during backtracking. This change removes basically the last remaining practical limitation of precision backtracking logic in BPF verifier. It fixes known deficiencies, but also opens up new opportunities to reduce number of verified states, explored in the subsequent patches. There are only three differences in selftests' BPF object files according to veristat, all in the positive direction (less states). File Program Insns (A) Insns (B) Insns (DIFF) States (A) States (B) States (DIFF) -------------------------------------- ------------- --------- --------- ------------- ---------- ---------- ------------- test_cls_redirect_dynptr.bpf.linked3.o cls_redirect 2987 2864 -123 (-4.12%) 240 231 -9 (-3.75%) xdp_synproxy_kern.bpf.linked3.o syncookie_tc 82848 82661 -187 (-0.23%) 5107 5073 -34 (-0.67%) xdp_synproxy_kern.bpf.linked3.o syncookie_xdp 85116 84964 -152 (-0.18%) 5162 5130 -32 (-0.62%) Note, I avoided renaming jmp_history to more generic insn_hist to minimize number of lines changed and potential merge conflicts between bpf and bpf-next trees. Notice also cur_hist_entry pointer reset to NULL at the beginning of instruction verification loop. This pointer avoids the problem of relying on last jump history entry's insn_idx to determine whether we already have entry for current instruction or not. It can happen that we added jump history entry because current instruction is_jmp_point(), but also we need to add instruction flags for stack access. In this case, we don't want to entries, so we need to reuse last added entry, if it is present. Relying on insn_idx comparison has the same ambiguity problem as the one that was fixed recently in [0], so we avoid that. [0] https://patchwork.kernel.org/project/netdevbpf/patch/20231110002638.4168352-3-andrii@kernel.org/
- CVE-2024-21803:
Use After Free vulnerability in Linux Linux kernel kernel on Linux, x86, ARM (bluetooth modules) allows Local Execution of Code. This vulnerability is associated with program files https://gitee.Com/anolis/cloud-kernel/blob/devel-5.10/net/bluetooth/af_bluetooth.C. This issue affects Linux kernel: from v2.6.12-rc2 before v6.8-rc1.
- CVE-2024-24855:
A race condition was found in the Linux kernel's scsi device driver in lpfc_unregister_fcf_rescan() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
- CVE-2024-24864:
A race condition was found in the Linux kernel's media/dvb-core in dvbdmx_write() function. This can result in a null pointer dereference issue, possibly leading to a kernel panic or denial of service issue.
- CVE-2024-25740:
A memory leak flaw was found in the UBI driver in drivers/mtd/ubi/attach.c in the Linux kernel through 6.7.4 for UBI_IOCATT, because kobj->name is not released.
- CVE-2024-25742:
In the Linux kernel before 6.9, an untrusted hypervisor can inject virtual interrupt 29 (#VC) at any point in time and can trigger its handler. This affects AMD SEV-SNP and AMD SEV-ES.
- CVE-2024-25743:
In the Linux kernel through 6.9, an untrusted hypervisor can inject virtual interrupts 0 and 14 at any point in time and can trigger the SIGFPE signal handler in userspace applications. This affects AMD SEV-SNP and AMD SEV-ES.
- CVE-2024-26596:
In the Linux kernel, the following vulnerability has been resolved: net: dsa: fix netdev_priv() dereference before check on non-DSA netdevice events After the blamed commit, we started doing this dereference for every NETDEV_CHANGEUPPER and NETDEV_PRECHANGEUPPER event in the system. static inline struct dsa_port *dsa_user_to_port(const struct net_device *dev) { struct dsa_user_priv *p = netdev_priv(dev); return p->dp; } Which is obviously bogus, because not all net_devices have a netdev_priv() of type struct dsa_user_priv. But struct dsa_user_priv is fairly small, and p->dp means dereferencing 8 bytes starting with offset 16. Most drivers allocate that much private memory anyway, making our access not fault, and we discard the bogus data quickly afterwards, so this wasn't caught. But the dummy interface is somewhat special in that it calls alloc_netdev() with a priv size of 0. So every netdev_priv() dereference is invalid, and we get this when we emit a NETDEV_PRECHANGEUPPER event with a VLAN as its new upper: $ ip link add dummy1 type dummy $ ip link add link dummy1 name dummy1.100 type vlan id 100 [ 43.309174] ================================================================== [ 43.316456] BUG: KASAN: slab-out-of-bounds in dsa_user_prechangeupper+0x30/0xe8 [ 43.323835] Read of size 8 at addr ffff3f86481d2990 by task ip/374 [ 43.330058] [ 43.342436] Call trace: [ 43.366542] dsa_user_prechangeupper+0x30/0xe8 [ 43.371024] dsa_user_netdevice_event+0xb38/0xee8 [ 43.375768] notifier_call_chain+0xa4/0x210 [ 43.379985] raw_notifier_call_chain+0x24/0x38 [ 43.384464] __netdev_upper_dev_link+0x3ec/0x5d8 [ 43.389120] netdev_upper_dev_link+0x70/0xa8 [ 43.393424] register_vlan_dev+0x1bc/0x310 [ 43.397554] vlan_newlink+0x210/0x248 [ 43.401247] rtnl_newlink+0x9fc/0xe30 [ 43.404942] rtnetlink_rcv_msg+0x378/0x580 Avoid the kernel oops by dereferencing after the type check, as customary.
- CVE-2024-26618:
In the Linux kernel, the following vulnerability has been resolved: arm64/sme: Always exit sme_alloc() early with existing storage When sme_alloc() is called with existing storage and we are not flushing we will always allocate new storage, both leaking the existing storage and corrupting the state. Fix this by separating the checks for flushing and for existing storage as we do for SVE. Callers that reallocate (eg, due to changing the vector length) should call sme_free() themselves.
- CVE-2024-26647:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix late derefrence 'dsc' check in 'link_set_dsc_pps_packet()' In link_set_dsc_pps_packet(), 'struct display_stream_compressor *dsc' was dereferenced in a DC_LOGGER_INIT(dsc->ctx->logger); before the 'dsc' NULL pointer check. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/link/link_dpms.c:905 link_set_dsc_pps_packet() warn: variable dereferenced before check 'dsc' (see line 903)
- CVE-2024-26648:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix variable deferencing before NULL check in edp_setup_replay() In edp_setup_replay(), 'struct dc *dc' & 'struct dmub_replay *replay' was dereferenced before the pointer 'link' & 'replay' NULL check. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/link/protocols/link_edp_panel_control.c:947 edp_setup_replay() warn: variable dereferenced before check 'link' (see line 933)
- CVE-2024-26656:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>. For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] <TASK> [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
- CVE-2024-26661:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL test for 'timing generator' in 'dcn21_set_pipe()' In "u32 otg_inst = pipe_ctx->stream_res.tg->inst;" pipe_ctx->stream_res.tg could be NULL, it is relying on the caller to ensure the tg is not NULL.
- CVE-2024-26662:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix 'panel_cntl' could be null in 'dcn21_set_backlight_level()' 'panel_cntl' structure used to control the display panel could be null, dereferencing it could lead to a null pointer access. Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn21/dcn21_hwseq.c:269 dcn21_set_backlight_level() error: we previously assumed 'panel_cntl' could be null (see line 250)
- CVE-2024-26669:
In the Linux kernel, the following vulnerability has been resolved: net/sched: flower: Fix chain template offload When a qdisc is deleted from a net device the stack instructs the underlying driver to remove its flow offload callback from the associated filter block using the 'FLOW_BLOCK_UNBIND' command. The stack then continues to replay the removal of the filters in the block for this driver by iterating over the chains in the block and invoking the 'reoffload' operation of the classifier being used. In turn, the classifier in its 'reoffload' operation prepares and emits a 'FLOW_CLS_DESTROY' command for each filter. However, the stack does not do the same for chain templates and the underlying driver never receives a 'FLOW_CLS_TMPLT_DESTROY' command when a qdisc is deleted. This results in a memory leak [1] which can be reproduced using [2]. Fix by introducing a 'tmplt_reoffload' operation and have the stack invoke it with the appropriate arguments as part of the replay. Implement the operation in the sole classifier that supports chain templates (flower) by emitting the 'FLOW_CLS_TMPLT_{CREATE,DESTROY}' command based on whether a flow offload callback is being bound to a filter block or being unbound from one. As far as I can tell, the issue happens since cited commit which reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains() in __tcf_block_put(). The order cannot be reversed as the filter block is expected to be freed after flushing all the chains. [1] unreferenced object 0xffff888107e28800 (size 2048): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[...... 01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................ backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab374e>] __kmalloc+0x4e/0x90 [<ffffffff832aec6d>] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [<ffffffff8379d29a>] ___sys_sendmsg+0x13a/0x1e0 [<ffffffff8379d50c>] __sys_sendmsg+0x11c/0x1f0 [<ffffffff843b9ce0>] do_syscall_64+0x40/0xe0 unreferenced object 0xffff88816d2c0400 (size 1024): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): 40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8..... 10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m.... backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab36c1>] __kmalloc_node+0x51/0x90 [<ffffffff81a8ed96>] kvmalloc_node+0xa6/0x1f0 [<ffffffff82827d03>] bucket_table_alloc.isra.0+0x83/0x460 [<ffffffff82828d2b>] rhashtable_init+0x43b/0x7c0 [<ffffffff832aed48>] mlxsw_sp_acl_ruleset_get+0x428/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [2] # tc qdisc add dev swp1 clsact # tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32 # tc qdisc del dev ---truncated---
- CVE-2024-26670:
In the Linux kernel, the following vulnerability has been resolved: arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't quite right, as it is supposed to be applied after the last explicit memory access, but is immediately followed by an LDR. The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295, which are described in: * https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en * https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en In both cases the workaround is described as: | If pagetable isolation is disabled, the context switch logic in the | kernel can be updated to execute the following sequence on affected | cores before exiting to EL0, and after all explicit memory accesses: | | 1. A non-shareable TLBI to any context and/or address, including | unused contexts or addresses, such as a `TLBI VALE1 Xzr`. | | 2. A DSB NSH to guarantee completion of the TLBI. The important part being that the TLBI+DSB must be placed "after all explicit memory accesses". Unfortunately, as-implemented, the TLBI+DSB is immediately followed by an LDR, as we have: | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0 | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | eret | alternative_else_nop_endif | | [ ... KPTI exception return path ... ] This patch fixes this by reworking the logic to place the TLBI+DSB immediately before the ERET, after all explicit memory accesses. The ERET is currently in a separate alternative block, and alternatives cannot be nested. To account for this, the alternative block for ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch to skip the KPTI logic, with the new shape of the logic being: | alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0 | [ ... KPTI exception return path ... ] | .L_skip_tramp_exit_\@: | | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | eret The new structure means that the workaround is only applied when KPTI is not in use; this is fine as noted in the documented implications of the erratum: | Pagetable isolation between EL0 and higher level ELs prevents the | issue from occurring. ... and as per the workaround description quoted above, the workaround is only necessary "If pagetable isolation is disabled".
- CVE-2024-26672:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix variable 'mca_funcs' dereferenced before NULL check in 'amdgpu_mca_smu_get_mca_entry()' Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_mca.c:377 amdgpu_mca_smu_get_mca_entry() warn: variable dereferenced before check 'mca_funcs' (see line 368) 357 int amdgpu_mca_smu_get_mca_entry(struct amdgpu_device *adev, enum amdgpu_mca_error_type type, 358 int idx, struct mca_bank_entry *entry) 359 { 360 const struct amdgpu_mca_smu_funcs *mca_funcs = adev->mca.mca_funcs; 361 int count; 362 363 switch (type) { 364 case AMDGPU_MCA_ERROR_TYPE_UE: 365 count = mca_funcs->max_ue_count; mca_funcs is dereferenced here. 366 break; 367 case AMDGPU_MCA_ERROR_TYPE_CE: 368 count = mca_funcs->max_ce_count; mca_funcs is dereferenced here. 369 break; 370 default: 371 return -EINVAL; 372 } 373 374 if (idx >= count) 375 return -EINVAL; 376 377 if (mca_funcs && mca_funcs->mca_get_mca_entry) ^^^^^^^^^ Checked too late!
- CVE-2024-26677:
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix delayed ACKs to not set the reference serial number Fix the construction of delayed ACKs to not set the reference serial number as they can't be used as an RTT reference.
- CVE-2024-26691:
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Fix circular locking dependency The rule inside kvm enforces that the vcpu->mutex is taken *inside* kvm->lock. The rule is violated by the pkvm_create_hyp_vm() which acquires the kvm->lock while already holding the vcpu->mutex lock from kvm_vcpu_ioctl(). Avoid the circular locking dependency altogether by protecting the hyp vm handle with the config_lock, much like we already do for other forms of VM-scoped data.
- CVE-2024-26719:
In the Linux kernel, the following vulnerability has been resolved: nouveau: offload fence uevents work to workqueue This should break the deadlock between the fctx lock and the irq lock. This offloads the processing off the work from the irq into a workqueue.
- CVE-2024-26739:
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: don't override retval if we already lost the skb If we're redirecting the skb, and haven't called tcf_mirred_forward(), yet, we need to tell the core to drop the skb by setting the retcode to SHOT. If we have called tcf_mirred_forward(), however, the skb is out of our hands and returning SHOT will lead to UaF. Move the retval override to the error path which actually need it.
- CVE-2024-26740:
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: use the backlog for mirred ingress The test Davide added in commit ca22da2fbd69 ("act_mirred: use the backlog for nested calls to mirred ingress") hangs our testing VMs every 10 or so runs, with the familiar tcp_v4_rcv -> tcp_v4_rcv deadlock reported by lockdep. The problem as previously described by Davide (see Link) is that if we reverse flow of traffic with the redirect (egress -> ingress) we may reach the same socket which generated the packet. And we may still be holding its socket lock. The common solution to such deadlocks is to put the packet in the Rx backlog, rather than run the Rx path inline. Do that for all egress -> ingress reversals, not just once we started to nest mirred calls. In the past there was a concern that the backlog indirection will lead to loss of error reporting / less accurate stats. But the current workaround does not seem to address the issue.
- CVE-2024-26756:
In the Linux kernel, the following vulnerability has been resolved: md: Don't register sync_thread for reshape directly Currently, if reshape is interrupted, then reassemble the array will register sync_thread directly from pers->run(), in this case 'MD_RECOVERY_RUNNING' is set directly, however, there is no guarantee that md_do_sync() will be executed, hence stop_sync_thread() will hang because 'MD_RECOVERY_RUNNING' can't be cleared. Last patch make sure that md_do_sync() will set MD_RECOVERY_DONE, however, following hang can still be triggered by dm-raid test shell/lvconvert-raid-reshape.sh occasionally: [root@fedora ~]# cat /proc/1982/stack [<0>] stop_sync_thread+0x1ab/0x270 [md_mod] [<0>] md_frozen_sync_thread+0x5c/0xa0 [md_mod] [<0>] raid_presuspend+0x1e/0x70 [dm_raid] [<0>] dm_table_presuspend_targets+0x40/0xb0 [dm_mod] [<0>] __dm_destroy+0x2a5/0x310 [dm_mod] [<0>] dm_destroy+0x16/0x30 [dm_mod] [<0>] dev_remove+0x165/0x290 [dm_mod] [<0>] ctl_ioctl+0x4bb/0x7b0 [dm_mod] [<0>] dm_ctl_ioctl+0x11/0x20 [dm_mod] [<0>] vfs_ioctl+0x21/0x60 [<0>] __x64_sys_ioctl+0xb9/0xe0 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 Meanwhile mddev->recovery is: MD_RECOVERY_RUNNING | MD_RECOVERY_INTR | MD_RECOVERY_RESHAPE | MD_RECOVERY_FROZEN Fix this problem by remove the code to register sync_thread directly from raid10 and raid5. And let md_check_recovery() to register sync_thread.
- CVE-2024-26757:
In the Linux kernel, the following vulnerability has been resolved: md: Don't ignore read-only array in md_check_recovery() Usually if the array is not read-write, md_check_recovery() won't register new sync_thread in the first place. And if the array is read-write and sync_thread is registered, md_set_readonly() will unregister sync_thread before setting the array read-only. md/raid follow this behavior hence there is no problem. After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following hang can be triggered by test shell/integrity-caching.sh: 1) array is read-only. dm-raid update super block: rs_update_sbs ro = mddev->ro mddev->ro = 0 -> set array read-write md_update_sb 2) register new sync thread concurrently. 3) dm-raid set array back to read-only: rs_update_sbs mddev->ro = ro 4) stop the array: raid_dtr md_stop stop_sync_thread set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread_directly(mddev->sync_thread); wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 5) sync thread done: md_do_sync set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); 6) daemon thread can't unregister sync thread: md_check_recovery if (!md_is_rdwr(mddev) && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery)) return; -> -> MD_RECOVERY_RUNNING can't be cleared, hence step 4 hang; The root cause is that dm-raid manipulate 'mddev->ro' by itself, however, dm-raid really should stop sync thread before setting the array read-only. Unfortunately, I need to read more code before I can refacter the handler of 'mddev->ro' in dm-raid, hence let's fix the problem the easy way for now to prevent dm-raid regression.
- CVE-2024-26758:
In the Linux kernel, the following vulnerability has been resolved: md: Don't ignore suspended array in md_check_recovery() mddev_suspend() never stop sync_thread, hence it doesn't make sense to ignore suspended array in md_check_recovery(), which might cause sync_thread can't be unregistered. After commit f52f5c71f3d4 ("md: fix stopping sync thread"), following hang can be triggered by test shell/integrity-caching.sh: 1) suspend the array: raid_postsuspend mddev_suspend 2) stop the array: raid_dtr md_stop __md_stop_writes stop_sync_thread set_bit(MD_RECOVERY_INTR, &mddev->recovery); md_wakeup_thread_directly(mddev->sync_thread); wait_event(..., !test_bit(MD_RECOVERY_RUNNING, &mddev->recovery)) 3) sync thread done: md_do_sync set_bit(MD_RECOVERY_DONE, &mddev->recovery); md_wakeup_thread(mddev->thread); 4) daemon thread can't unregister sync thread: md_check_recovery if (mddev->suspended) return; -> return directly md_read_sync_thread clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery); -> MD_RECOVERY_RUNNING can't be cleared, hence step 2 hang; This problem is not just related to dm-raid, fix it by ignoring suspended array in md_check_recovery(). And follow up patches will improve dm-raid better to frozen sync thread during suspend.
- CVE-2024-26767:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fixed integer types and null check locations [why]: issues fixed: - comparison with wider integer type in loop condition which can cause infinite loops - pointer dereference before null check
- CVE-2024-26768:
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC] With default config, the value of NR_CPUS is 64. When HW platform has more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC is the maximum cpu number in MADT table (max physical number) which can exceed the supported maximum cpu number (NR_CPUS, max logical number), but kernel should not crash. Kernel should boot cpus with NR_CPUS, let the remainder cpus stay in BIOS. The potential crash reason is that the array acpi_core_pic[NR_CPUS] can be overflowed when parsing MADT table, and it is obvious that CORE_PIC should be corresponding to physical core rather than logical core, so it is better to define the array as acpi_core_pic[MAX_CORE_PIC]. With the patch, system can boot up 64 vcpus with qemu parameter -smp 128, otherwise system will crash with the following message. [ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec [ 0.000000] Oops[#1]: [ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192 [ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022 [ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60 [ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8 [ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005 [ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001 [ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063 [ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98 [ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90 [ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330 [ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250 [ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94 [ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) [ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE) [ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE) [ 0.000000] ECFG: 00070800 (LIE=11 VS=7) [ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0) [ 0.000000] BADV: 0000420000004259 [ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000) [ 0.000000] Modules linked in: [ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____)) [ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec [ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000 [ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60 [ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000 [ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c [ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08 [ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018 [ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000 [ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000 [ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000 [ 0.000000] ... [ 0.000000] Call Trace: [ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94 [ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250 [ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c [ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670 [ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc
- CVE-2024-26783:
In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index With numa balancing on, when a numa system is running where a numa node doesn't have its local memory so it has no managed zones, the following oops has been observed. It's because wakeup_kswapd() is called with a wrong zone index, -1. Fixed it by checking the index before calling wakeup_kswapd(). > BUG: unable to handle page fault for address: 00000000000033f3 > #PF: supervisor read access in kernel mode > #PF: error_code(0x0000) - not-present page > PGD 0 P4D 0 > Oops: 0000 [#1] PREEMPT SMP NOPTI > CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS > rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 > RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812) > Code: (omitted) > RSP: 0000:ffffc90004257d58 EFLAGS: 00010286 > RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480 > RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff > R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940 > FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 > PKRU: 55555554 > Call Trace: > <TASK> > ? __die > ? page_fault_oops > ? __pte_offset_map_lock > ? exc_page_fault > ? asm_exc_page_fault > ? wakeup_kswapd > migrate_misplaced_page > __handle_mm_fault > handle_mm_fault > do_user_addr_fault > exc_page_fault > asm_exc_page_fault > RIP: 0033:0x55b897ba0808 > Code: (omitted) > RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287 > RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0 > RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0 > RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075 > R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000 > R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000 > </TASK>
- CVE-2024-26799:
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Fix uninitialized pointer dmactl In the case where __lpass_get_dmactl_handle is called and the driver id dai_id is invalid the pointer dmactl is not being assigned a value, and dmactl contains a garbage value since it has not been initialized and so the null check may not work. Fix this to initialize dmactl to NULL. One could argue that modern compilers will set this to zero, but it is useful to keep this initialized as per the same way in functions __lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params. Cleans up clang scan build warning: sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition evaluates to a garbage value [core.uninitialized.Branch]
- CVE-2024-26807:
In the Linux kernel, the following vulnerability has been resolved: Both cadence-quadspi ->runtime_suspend() and ->runtime_resume() implementations start with: struct cqspi_st *cqspi = dev_get_drvdata(dev); struct spi_controller *host = dev_get_drvdata(dev); This obviously cannot be correct, unless "struct cqspi_st" is the first member of " struct spi_controller", or the other way around, but it is not the case. "struct spi_controller" is allocated by devm_spi_alloc_host(), which allocates an extra amount of memory for private data, used to store "struct cqspi_st". The ->probe() function of the cadence-quadspi driver then sets the device drvdata to store the address of the "struct cqspi_st" structure. Therefore: struct cqspi_st *cqspi = dev_get_drvdata(dev); is correct, but: struct spi_controller *host = dev_get_drvdata(dev); is not, as it makes "host" point not to a "struct spi_controller" but to the same "struct cqspi_st" structure as above. This obviously leads to bad things (memory corruption, kernel crashes) directly during ->probe(), as ->probe() enables the device using PM runtime, leading the ->runtime_resume() hook being called, which in turns calls spi_controller_resume() with the wrong pointer. This has at least been reported [0] to cause a kernel crash, but the exact behavior will depend on the memory contents. [0] https://lore.kernel.org/all/20240226121803.5a7r5wkpbbowcxgx@dhruva/ This issue potentially affects all platforms that are currently using the cadence-quadspi driver.
- CVE-2024-26822:
In the Linux kernel, the following vulnerability has been resolved: smb: client: set correct id, uid and cruid for multiuser automounts When uid, gid and cruid are not specified, we need to dynamically set them into the filesystem context used for automounting otherwise they'll end up reusing the values from the parent mount.
- CVE-2024-26836:
In the Linux kernel, the following vulnerability has been resolved: platform/x86: think-lmi: Fix password opcode ordering for workstations The Lenovo workstations require the password opcode to be run before the attribute value is changed (if Admin password is enabled). Tested on some Thinkpads to confirm they are OK with this order too.
- CVE-2024-26841:
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Update cpu_sibling_map when disabling nonboot CPUs Update cpu_sibling_map when disabling nonboot CPUs by defining & calling clear_cpu_sibling_map(), otherwise we get such errors on SMT systems: jump label: negative count! WARNING: CPU: 6 PID: 45 at kernel/jump_label.c:263 __static_key_slow_dec_cpuslocked+0xec/0x100 CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340 pc 90000000004c302c ra 90000000004c302c tp 90000001005bc000 sp 90000001005bfd20 a0 000000000000001b a1 900000000224c278 a2 90000001005bfb58 a3 900000000224c280 a4 900000000224c278 a5 90000001005bfb50 a6 0000000000000001 a7 0000000000000001 t0 ce87a4763eb5234a t1 ce87a4763eb5234a t2 0000000000000000 t3 0000000000000000 t4 0000000000000006 t5 0000000000000000 t6 0000000000000064 t7 0000000000001964 t8 000000000009ebf6 u0 9000000001f2a068 s9 0000000000000000 s0 900000000246a2d8 s1 ffffffffffffffff s2 ffffffffffffffff s3 90000000021518c0 s4 0000000000000040 s5 9000000002151058 s6 9000000009828e40 s7 00000000000000b4 s8 0000000000000006 ra: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100 ERA: 90000000004c302c __static_key_slow_dec_cpuslocked+0xec/0x100 CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE) PRMD: 00000004 (PPLV0 +PIE -PWE) EUEN: 00000000 (-FPE -SXE -ASXE -BTE) ECFG: 00071c1c (LIE=2-4,10-12 VS=7) ESTAT: 000c0000 [BRK] (IS= ECode=12 EsubCode=0) PRID: 0014d000 (Loongson-64bit, Loongson-3A6000-HV) CPU: 6 PID: 45 Comm: cpuhp/6 Not tainted 6.8.0-rc5+ #1340 Stack : 0000000000000000 900000000203f258 900000000179afc8 90000001005bc000 90000001005bf980 0000000000000000 90000001005bf988 9000000001fe0be0 900000000224c280 900000000224c278 90000001005bf8c0 0000000000000001 0000000000000001 ce87a4763eb5234a 0000000007f38000 90000001003f8cc0 0000000000000000 0000000000000006 0000000000000000 4c206e6f73676e6f 6f4c203a656d616e 000000000009ec99 0000000007f38000 0000000000000000 900000000214b000 9000000001fe0be0 0000000000000004 0000000000000000 0000000000000107 0000000000000009 ffffffffffafdabe 00000000000000b4 0000000000000006 90000000004c302c 9000000000224528 00005555939a0c7c 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1c ... Call Trace: [<9000000000224528>] show_stack+0x48/0x1a0 [<900000000179afc8>] dump_stack_lvl+0x78/0xa0 [<9000000000263ed0>] __warn+0x90/0x1a0 [<90000000017419b8>] report_bug+0x1b8/0x280 [<900000000179c564>] do_bp+0x264/0x420 [<90000000004c302c>] __static_key_slow_dec_cpuslocked+0xec/0x100 [<90000000002b4d7c>] sched_cpu_deactivate+0x2fc/0x300 [<9000000000266498>] cpuhp_invoke_callback+0x178/0x8a0 [<9000000000267f70>] cpuhp_thread_fun+0xf0/0x240 [<90000000002a117c>] smpboot_thread_fn+0x1dc/0x2e0 [<900000000029a720>] kthread+0x140/0x160 [<9000000000222288>] ret_from_kernel_thread+0xc/0xa4
- CVE-2024-26842:
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix shift issue in ufshcd_clear_cmd() When task_tag >= 32 (in MCQ mode) and sizeof(unsigned int) == 4, 1U << task_tag will out of bounds for a u32 mask. Fix this up to prevent SHIFT_ISSUE (bitwise shifts that are out of bounds for their data type). [name:debug_monitors&]Unexpected kernel BRK exception at EL1 [name:traps&]Internal error: BRK handler: 00000000f2005514 [#1] PREEMPT SMP [name:mediatek_cpufreq_hw&]cpufreq stop DVFS log done [name:mrdump&]Kernel Offset: 0x1ba5800000 from 0xffffffc008000000 [name:mrdump&]PHYS_OFFSET: 0x80000000 [name:mrdump&]pstate: 22400005 (nzCv daif +PAN -UAO) [name:mrdump&]pc : [0xffffffdbaf52bb2c] ufshcd_clear_cmd+0x280/0x288 [name:mrdump&]lr : [0xffffffdbaf52a774] ufshcd_wait_for_dev_cmd+0x3e4/0x82c [name:mrdump&]sp : ffffffc0081471b0 <snip> Workqueue: ufs_eh_wq_0 ufshcd_err_handler Call trace: dump_backtrace+0xf8/0x144 show_stack+0x18/0x24 dump_stack_lvl+0x78/0x9c dump_stack+0x18/0x44 mrdump_common_die+0x254/0x480 [mrdump] ipanic_die+0x20/0x30 [mrdump] notify_die+0x15c/0x204 die+0x10c/0x5f8 arm64_notify_die+0x74/0x13c do_debug_exception+0x164/0x26c el1_dbg+0x64/0x80 el1h_64_sync_handler+0x3c/0x90 el1h_64_sync+0x68/0x6c ufshcd_clear_cmd+0x280/0x288 ufshcd_wait_for_dev_cmd+0x3e4/0x82c ufshcd_exec_dev_cmd+0x5bc/0x9ac ufshcd_verify_dev_init+0x84/0x1c8 ufshcd_probe_hba+0x724/0x1ce0 ufshcd_host_reset_and_restore+0x260/0x574 ufshcd_reset_and_restore+0x138/0xbd0 ufshcd_err_handler+0x1218/0x2f28 process_one_work+0x5fc/0x1140 worker_thread+0x7d8/0xe20 kthread+0x25c/0x468 ret_from_fork+0x10/0x20
- CVE-2024-26866:
In the Linux kernel, the following vulnerability has been resolved: spi: lpspi: Avoid potential use-after-free in probe() fsl_lpspi_probe() is allocating/disposing memory manually with spi_alloc_host()/spi_alloc_target(), but uses devm_spi_register_controller(). In case of error after the latter call the memory will be explicitly freed in the probe function by spi_controller_put() call, but used afterwards by "devm" management outside probe() (spi_unregister_controller() <- devm_spi_unregister() below). Unable to handle kernel NULL pointer dereference at virtual address 0000000000000070 ... Call trace: kernfs_find_ns kernfs_find_and_get_ns sysfs_remove_group sysfs_remove_groups device_remove_attrs device_del spi_unregister_controller devm_spi_unregister release_nodes devres_release_all really_probe driver_probe_device __device_attach_driver bus_for_each_drv __device_attach device_initial_probe bus_probe_device deferred_probe_work_func process_one_work worker_thread kthread ret_from_fork
- CVE-2024-26869:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to truncate meta inode pages forcely Below race case can cause data corruption: Thread A GC thread - gc_data_segment - ra_data_block - locked meta_inode page - f2fs_inplace_write_data - invalidate_mapping_pages : fail to invalidate meta_inode page due to lock failure or dirty|writeback status - f2fs_submit_page_bio : write last dirty data to old blkaddr - move_data_block - load old data from meta_inode page - f2fs_submit_page_write : write old data to new blkaddr Because invalidate_mapping_pages() will skip invalidating page which has unclear status including locked, dirty, writeback and so on, so we need to use truncate_inode_pages_range() instead of invalidate_mapping_pages() to make sure meta_inode page will be dropped.
- CVE-2024-26876:
In the Linux kernel, the following vulnerability has been resolved: drm/bridge: adv7511: fix crash on irq during probe Moved IRQ registration down to end of adv7511_probe(). If an IRQ already is pending during adv7511_probe (before adv7511_cec_init) then cec_received_msg_ts could crash using uninitialized data: Unable to handle kernel read from unreadable memory at virtual address 00000000000003d5 Internal error: Oops: 96000004 [#1] PREEMPT_RT SMP Call trace: cec_received_msg_ts+0x48/0x990 [cec] adv7511_cec_irq_process+0x1cc/0x308 [adv7511] adv7511_irq_process+0xd8/0x120 [adv7511] adv7511_irq_handler+0x1c/0x30 [adv7511] irq_thread_fn+0x30/0xa0 irq_thread+0x14c/0x238 kthread+0x190/0x1a8
- CVE-2024-26902:
In the Linux kernel, the following vulnerability has been resolved: perf: RISCV: Fix panic on pmu overflow handler (1 << idx) of int is not desired when setting bits in unsigned long overflowed_ctrs, use BIT() instead. This panic happens when running 'perf record -e branches' on sophgo sg2042. [ 273.311852] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000098 [ 273.320851] Oops [#1] [ 273.323179] Modules linked in: [ 273.326303] CPU: 0 PID: 1475 Comm: perf Not tainted 6.6.0-rc3+ #9 [ 273.332521] Hardware name: Sophgo Mango (DT) [ 273.336878] epc : riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.342291] ra : pmu_sbi_ovf_handler+0x2e0/0x34e [ 273.347091] epc : ffffffff80aecd98 ra : ffffffff80aee056 sp : fffffff6e36928b0 [ 273.354454] gp : ffffffff821f82d0 tp : ffffffd90c353200 t0 : 0000002ade4f9978 [ 273.361815] t1 : 0000000000504d55 t2 : ffffffff8016cd8c s0 : fffffff6e3692a70 [ 273.369180] s1 : 0000000000000020 a0 : 0000000000000000 a1 : 00001a8e81800000 [ 273.376540] a2 : 0000003c00070198 a3 : 0000003c00db75a4 a4 : 0000000000000015 [ 273.383901] a5 : ffffffd7ff8804b0 a6 : 0000000000000015 a7 : 000000000000002a [ 273.391327] s2 : 000000000000ffff s3 : 0000000000000000 s4 : ffffffd7ff8803b0 [ 273.398773] s5 : 0000000000504d55 s6 : ffffffd905069800 s7 : ffffffff821fe210 [ 273.406139] s8 : 000000007fffffff s9 : ffffffd7ff8803b0 s10: ffffffd903f29098 [ 273.413660] s11: 0000000080000000 t3 : 0000000000000003 t4 : ffffffff8017a0ca [ 273.421022] t5 : ffffffff8023cfc2 t6 : ffffffd9040780e8 [ 273.426437] status: 0000000200000100 badaddr: 0000000000000098 cause: 000000000000000d [ 273.434512] [<ffffffff80aecd98>] riscv_pmu_ctr_get_width_mask+0x8/0x62 [ 273.441169] [<ffffffff80076bd8>] handle_percpu_devid_irq+0x98/0x1ee [ 273.447562] [<ffffffff80071158>] generic_handle_domain_irq+0x28/0x36 [ 273.454151] [<ffffffff8047a99a>] riscv_intc_irq+0x36/0x4e [ 273.459659] [<ffffffff80c944de>] handle_riscv_irq+0x4a/0x74 [ 273.465442] [<ffffffff80c94c48>] do_irq+0x62/0x92 [ 273.470360] Code: 0420 60a2 6402 5529 0141 8082 0013 0000 0013 0000 (6d5c) b783 [ 273.477921] ---[ end trace 0000000000000000 ]--- [ 273.482630] Kernel panic - not syncing: Fatal exception in interrupt
- CVE-2024-26913:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix dcn35 8k30 Underflow/Corruption Issue [why] odm calculation is missing for pipe split policy determination and cause Underflow/Corruption issue. [how] Add the odm calculation.
- CVE-2024-26914:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix incorrect mpc_combine array size [why] MAX_SURFACES is per stream, while MAX_PLANES is per asic. The mpc_combine is an array that records all the planes per asic. Therefore MAX_PLANES should be used as the array size. Using MAX_SURFACES causes array overflow when there are more than 3 planes. [how] Use the MAX_PLANES for the mpc_combine array size.
- CVE-2024-26930:
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of the ha->vp_map pointer Coverity scan reported potential risk of double free of the pointer ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed in function qla2x00_mem_free(ha). Assign NULL to vp_map and kfree take care of NULL.
- CVE-2024-26944:
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix use-after-free in do_zone_finish() Shinichiro reported the following use-after-free triggered by the device replace operation in fstests btrfs/070. BTRFS info (device nullb1): scrub: finished on devid 1 with status: 0 ================================================================== BUG: KASAN: slab-use-after-free in do_zone_finish+0x91a/0xb90 [btrfs] Read of size 8 at addr ffff8881543c8060 by task btrfs-cleaner/3494007 CPU: 0 PID: 3494007 Comm: btrfs-cleaner Tainted: G W 6.8.0-rc5-kts #1 Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020 Call Trace: <TASK> dump_stack_lvl+0x5b/0x90 print_report+0xcf/0x670 ? __virt_addr_valid+0x200/0x3e0 kasan_report+0xd8/0x110 ? do_zone_finish+0x91a/0xb90 [btrfs] ? do_zone_finish+0x91a/0xb90 [btrfs] do_zone_finish+0x91a/0xb90 [btrfs] btrfs_delete_unused_bgs+0x5e1/0x1750 [btrfs] ? __pfx_btrfs_delete_unused_bgs+0x10/0x10 [btrfs] ? btrfs_put_root+0x2d/0x220 [btrfs] ? btrfs_clean_one_deleted_snapshot+0x299/0x430 [btrfs] cleaner_kthread+0x21e/0x380 [btrfs] ? __pfx_cleaner_kthread+0x10/0x10 [btrfs] kthread+0x2e3/0x3c0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x31/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK> Allocated by task 3493983: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 btrfs_alloc_device+0xb3/0x4e0 [btrfs] device_list_add.constprop.0+0x993/0x1630 [btrfs] btrfs_scan_one_device+0x219/0x3d0 [btrfs] btrfs_control_ioctl+0x26e/0x310 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 Freed by task 3494056: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3f/0x60 poison_slab_object+0x102/0x170 __kasan_slab_free+0x32/0x70 kfree+0x11b/0x320 btrfs_rm_dev_replace_free_srcdev+0xca/0x280 [btrfs] btrfs_dev_replace_finishing+0xd7e/0x14f0 [btrfs] btrfs_dev_replace_by_ioctl+0x1286/0x25a0 [btrfs] btrfs_ioctl+0xb27/0x57d0 [btrfs] __x64_sys_ioctl+0x134/0x1b0 do_syscall_64+0x99/0x190 entry_SYSCALL_64_after_hwframe+0x6e/0x76 The buggy address belongs to the object at ffff8881543c8000 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 96 bytes inside of freed 1024-byte region [ffff8881543c8000, ffff8881543c8400) The buggy address belongs to the physical page: page:00000000fe2c1285 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x1543c8 head:00000000fe2c1285 order:3 entire_mapcount:0 nr_pages_mapped:0 pincount:0 flags: 0x17ffffc0000840(slab|head|node=0|zone=2|lastcpupid=0x1fffff) page_type: 0xffffffff() raw: 0017ffffc0000840 ffff888100042dc0 ffffea0019e8f200 dead000000000002 raw: 0000000000000000 0000000000100010 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8881543c7f00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff8881543c7f80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff8881543c8000: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8881543c8080: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8881543c8100: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb This UAF happens because we're accessing stale zone information of a already removed btrfs_device in do_zone_finish(). The sequence of events is as follows: btrfs_dev_replace_start btrfs_scrub_dev btrfs_dev_replace_finishing btrfs_dev_replace_update_device_in_mapping_tree <-- devices replaced btrfs_rm_dev_replace_free_srcdev btrfs_free_device <-- device freed cleaner_kthread btrfs_delete_unused_bgs btrfs_zone_finish do_zone_finish <-- refers the freed device The reason for this is that we're using a ---truncated---
- CVE-2024-26947:
In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/Zbtdue57RO0QScJM@linux.ibm.com/
- CVE-2024-26948:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add a dc_state NULL check in dc_state_release [How] Check wheather state is NULL before releasing it.
- CVE-2024-26953:
In the Linux kernel, the following vulnerability has been resolved: net: esp: fix bad handling of pages from page_pool When the skb is reorganized during esp_output (!esp->inline), the pages coming from the original skb fragments are supposed to be released back to the system through put_page. But if the skb fragment pages are originating from a page_pool, calling put_page on them will trigger a page_pool leak which will eventually result in a crash. This leak can be easily observed when using CONFIG_DEBUG_VM and doing ipsec + gre (non offloaded) forwarding: BUG: Bad page state in process ksoftirqd/16 pfn:1451b6 page:00000000de2b8d32 refcount:0 mapcount:0 mapping:0000000000000000 index:0x1451b6000 pfn:0x1451b6 flags: 0x200000000000000(node=0|zone=2) page_type: 0xffffffff() raw: 0200000000000000 dead000000000040 ffff88810d23c000 0000000000000000 raw: 00000001451b6000 0000000000000001 00000000ffffffff 0000000000000000 page dumped because: page_pool leak Modules linked in: ip_gre gre mlx5_ib mlx5_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink iptable_nat nf_nat xt_addrtype br_netfilter rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi ib_umad rdma_cm ib_ipoib iw_cm ib_cm ib_uverbs ib_core overlay zram zsmalloc fuse [last unloaded: mlx5_core] CPU: 16 PID: 96 Comm: ksoftirqd/16 Not tainted 6.8.0-rc4+ #22 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x36/0x50 bad_page+0x70/0xf0 free_unref_page_prepare+0x27a/0x460 free_unref_page+0x38/0x120 esp_ssg_unref.isra.0+0x15f/0x200 esp_output_tail+0x66d/0x780 esp_xmit+0x2c5/0x360 validate_xmit_xfrm+0x313/0x370 ? validate_xmit_skb+0x1d/0x330 validate_xmit_skb_list+0x4c/0x70 sch_direct_xmit+0x23e/0x350 __dev_queue_xmit+0x337/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x25e/0x580 iptunnel_xmit+0x19b/0x240 ip_tunnel_xmit+0x5fb/0xb60 ipgre_xmit+0x14d/0x280 [ip_gre] dev_hard_start_xmit+0xc3/0x1c0 __dev_queue_xmit+0x208/0xba0 ? nf_hook_slow+0x3f/0xd0 ip_finish_output2+0x1ca/0x580 ip_sublist_rcv_finish+0x32/0x40 ip_sublist_rcv+0x1b2/0x1f0 ? ip_rcv_finish_core.constprop.0+0x460/0x460 ip_list_rcv+0x103/0x130 __netif_receive_skb_list_core+0x181/0x1e0 netif_receive_skb_list_internal+0x1b3/0x2c0 napi_gro_receive+0xc8/0x200 gro_cell_poll+0x52/0x90 __napi_poll+0x25/0x1a0 net_rx_action+0x28e/0x300 __do_softirq+0xc3/0x276 ? sort_range+0x20/0x20 run_ksoftirqd+0x1e/0x30 smpboot_thread_fn+0xa6/0x130 kthread+0xcd/0x100 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x31/0x50 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> The suggested fix is to introduce a new wrapper (skb_page_unref) that covers page refcounting for page_pool pages as well.
- CVE-2024-26962:
In the Linux kernel, the following vulnerability has been resolved: dm-raid456, md/raid456: fix a deadlock for dm-raid456 while io concurrent with reshape For raid456, if reshape is still in progress, then IO across reshape position will wait for reshape to make progress. However, for dm-raid, in following cases reshape will never make progress hence IO will hang: 1) the array is read-only; 2) MD_RECOVERY_WAIT is set; 3) MD_RECOVERY_FROZEN is set; After commit c467e97f079f ("md/raid6: use valid sector values to determine if an I/O should wait on the reshape") fix the problem that IO across reshape position doesn't wait for reshape, the dm-raid test shell/lvconvert-raid-reshape.sh start to hang: [root@fedora ~]# cat /proc/979/stack [<0>] wait_woken+0x7d/0x90 [<0>] raid5_make_request+0x929/0x1d70 [raid456] [<0>] md_handle_request+0xc2/0x3b0 [md_mod] [<0>] raid_map+0x2c/0x50 [dm_raid] [<0>] __map_bio+0x251/0x380 [dm_mod] [<0>] dm_submit_bio+0x1f0/0x760 [dm_mod] [<0>] __submit_bio+0xc2/0x1c0 [<0>] submit_bio_noacct_nocheck+0x17f/0x450 [<0>] submit_bio_noacct+0x2bc/0x780 [<0>] submit_bio+0x70/0xc0 [<0>] mpage_readahead+0x169/0x1f0 [<0>] blkdev_readahead+0x18/0x30 [<0>] read_pages+0x7c/0x3b0 [<0>] page_cache_ra_unbounded+0x1ab/0x280 [<0>] force_page_cache_ra+0x9e/0x130 [<0>] page_cache_sync_ra+0x3b/0x110 [<0>] filemap_get_pages+0x143/0xa30 [<0>] filemap_read+0xdc/0x4b0 [<0>] blkdev_read_iter+0x75/0x200 [<0>] vfs_read+0x272/0x460 [<0>] ksys_read+0x7a/0x170 [<0>] __x64_sys_read+0x1c/0x30 [<0>] do_syscall_64+0xc6/0x230 [<0>] entry_SYSCALL_64_after_hwframe+0x6c/0x74 This is because reshape can't make progress. For md/raid, the problem doesn't exist because register new sync_thread doesn't rely on the IO to be done any more: 1) If array is read-only, it can switch to read-write by ioctl/sysfs; 2) md/raid never set MD_RECOVERY_WAIT; 3) If MD_RECOVERY_FROZEN is set, mddev_suspend() doesn't hold 'reconfig_mutex', hence it can be cleared and reshape can continue by sysfs api 'sync_action'. However, I'm not sure yet how to avoid the problem in dm-raid yet. This patch on the one hand make sure raid_message() can't change sync_thread() through raid_message() after presuspend(), on the other hand detect the above 3 cases before wait for IO do be done in dm_suspend(), and let dm-raid requeue those IO.
- CVE-2024-26982:
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [phillip@squashfs.org.uk: whitespace fix] Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk
- CVE-2024-27005:
In the Linux kernel, the following vulnerability has been resolved: interconnect: Don't access req_list while it's being manipulated The icc_lock mutex was split into separate icc_lock and icc_bw_lock mutexes in [1] to avoid lockdep splats. However, this didn't adequately protect access to icc_node::req_list. The icc_set_bw() function will eventually iterate over req_list while only holding icc_bw_lock, but req_list can be modified while only holding icc_lock. This causes races between icc_set_bw(), of_icc_get(), and icc_put(). Example A: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); icc_put(path_b) mutex_lock(&icc_lock); aggregate_requests() hlist_for_each_entry(r, ... hlist_del(... <r = invalid pointer> Example B: CPU0 CPU1 ---- ---- icc_set_bw(path_a) mutex_lock(&icc_bw_lock); path_b = of_icc_get() of_icc_get_by_index() mutex_lock(&icc_lock); path_find() path_init() aggregate_requests() hlist_for_each_entry(r, ... hlist_add_head(... <r = invalid pointer> Fix this by ensuring icc_bw_lock is always held before manipulating icc_node::req_list. The additional places icc_bw_lock is held don't perform any memory allocations, so we should still be safe from the original lockdep splats that motivated the separate locks. [1] commit af42269c3523 ("interconnect: Fix locking for runpm vs reclaim")
- CVE-2024-27010:
In the Linux kernel, the following vulnerability has been resolved: net/sched: Fix mirred deadlock on device recursion When the mirred action is used on a classful egress qdisc and a packet is mirrored or redirected to self we hit a qdisc lock deadlock. See trace below. [..... other info removed for brevity....] [ 82.890906] [ 82.890906] ============================================ [ 82.890906] WARNING: possible recursive locking detected [ 82.890906] 6.8.0-05205-g77fadd89fe2d-dirty #213 Tainted: G W [ 82.890906] -------------------------------------------- [ 82.890906] ping/418 is trying to acquire lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] but task is already holding lock: [ 82.890906] ffff888006994110 (&sch->q.lock){+.-.}-{3:3}, at: __dev_queue_xmit+0x1778/0x3550 [ 82.890906] [ 82.890906] other info that might help us debug this: [ 82.890906] Possible unsafe locking scenario: [ 82.890906] [ 82.890906] CPU0 [ 82.890906] ---- [ 82.890906] lock(&sch->q.lock); [ 82.890906] lock(&sch->q.lock); [ 82.890906] [ 82.890906] *** DEADLOCK *** [ 82.890906] [..... other info removed for brevity....] Example setup (eth0->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 Another example(eth0->eth1->eth0) to recreate tc qdisc add dev eth0 root handle 1: htb default 30 tc filter add dev eth0 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth1 tc qdisc add dev eth1 root handle 1: htb default 30 tc filter add dev eth1 handle 1: protocol ip prio 2 matchall \ action mirred egress redirect dev eth0 We fix this by adding an owner field (CPU id) to struct Qdisc set after root qdisc is entered. When the softirq enters it a second time, if the qdisc owner is the same CPU, the packet is dropped to break the loop.
- CVE-2024-27011:
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: fix memleak in map from abort path The delete set command does not rely on the transaction object for element removal, therefore, a combination of delete element + delete set from the abort path could result in restoring twice the refcount of the mapping. Check for inactive element in the next generation for the delete element command in the abort path, skip restoring state if next generation bit has been already cleared. This is similar to the activate logic using the set walk iterator. [ 6170.286929] ------------[ cut here ]------------ [ 6170.286939] WARNING: CPU: 6 PID: 790302 at net/netfilter/nf_tables_api.c:2086 nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287071] Modules linked in: [...] [ 6170.287633] CPU: 6 PID: 790302 Comm: kworker/6:2 Not tainted 6.9.0-rc3+ #365 [ 6170.287768] RIP: 0010:nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.287886] Code: df 48 8d 7d 58 e8 69 2e 3b df 48 8b 7d 58 e8 80 1b 37 df 48 8d 7d 68 e8 57 2e 3b df 48 8b 7d 68 e8 6e 1b 37 df 48 89 ef eb c4 <0f> 0b 48 83 c4 08 5b 5d 41 5c 41 5d 41 5e 41 5f c3 cc cc cc cc 0f [ 6170.287895] RSP: 0018:ffff888134b8fd08 EFLAGS: 00010202 [ 6170.287904] RAX: 0000000000000001 RBX: ffff888125bffb28 RCX: dffffc0000000000 [ 6170.287912] RDX: 0000000000000003 RSI: ffffffffa20298ab RDI: ffff88811ebe4750 [ 6170.287919] RBP: ffff88811ebe4700 R08: ffff88838e812650 R09: fffffbfff0623a55 [ 6170.287926] R10: ffffffff8311d2af R11: 0000000000000001 R12: ffff888125bffb10 [ 6170.287933] R13: ffff888125bffb10 R14: dead000000000122 R15: dead000000000100 [ 6170.287940] FS: 0000000000000000(0000) GS:ffff888390b00000(0000) knlGS:0000000000000000 [ 6170.287948] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 6170.287955] CR2: 00007fd31fc00710 CR3: 0000000133f60004 CR4: 00000000001706f0 [ 6170.287962] Call Trace: [ 6170.287967] <TASK> [ 6170.287973] ? __warn+0x9f/0x1a0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.287986] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288092] ? report_bug+0x1b1/0x1e0 [ 6170.288104] ? handle_bug+0x3c/0x70 [ 6170.288112] ? exc_invalid_op+0x17/0x40 [ 6170.288120] ? asm_exc_invalid_op+0x1a/0x20 [ 6170.288132] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288243] ? nf_tables_chain_destroy+0x1f7/0x220 [nf_tables] [ 6170.288366] ? nf_tables_chain_destroy+0x2b/0x220 [nf_tables] [ 6170.288483] nf_tables_trans_destroy_work+0x588/0x590 [nf_tables]
- CVE-2024-27012:
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: restore set elements when delete set fails From abort path, nft_mapelem_activate() needs to restore refcounters to the original state. Currently, it uses the set->ops->walk() to iterate over these set elements. The existing set iterator skips inactive elements in the next generation, this does not work from the abort path to restore the original state since it has to skip active elements instead (not inactive ones). This patch moves the check for inactive elements to the set iterator callback, then it reverses the logic for the .activate case which needs to skip active elements. Toggle next generation bit for elements when delete set command is invoked and call nft_clear() from .activate (abort) path to restore the next generation bit. The splat below shows an object in mappings memleak: [43929.457523] ------------[ cut here ]------------ [43929.457532] WARNING: CPU: 0 PID: 1139 at include/net/netfilter/nf_tables.h:1237 nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [...] [43929.458014] RIP: 0010:nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458076] Code: 83 f8 01 77 ab 49 8d 7c 24 08 e8 37 5e d0 de 49 8b 6c 24 08 48 8d 7d 50 e8 e9 5c d0 de 8b 45 50 8d 50 ff 89 55 50 85 c0 75 86 <0f> 0b eb 82 0f 0b eb b3 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 [43929.458081] RSP: 0018:ffff888140f9f4b0 EFLAGS: 00010246 [43929.458086] RAX: 0000000000000000 RBX: ffff8881434f5288 RCX: dffffc0000000000 [43929.458090] RDX: 00000000ffffffff RSI: ffffffffa26d28a7 RDI: ffff88810ecc9550 [43929.458093] RBP: ffff88810ecc9500 R08: 0000000000000001 R09: ffffed10281f3e8f [43929.458096] R10: 0000000000000003 R11: ffff0000ffff0000 R12: ffff8881434f52a0 [43929.458100] R13: ffff888140f9f5f4 R14: ffff888151c7a800 R15: 0000000000000002 [43929.458103] FS: 00007f0c687c4740(0000) GS:ffff888390800000(0000) knlGS:0000000000000000 [43929.458107] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [43929.458111] CR2: 00007f58dbe5b008 CR3: 0000000123602005 CR4: 00000000001706f0 [43929.458114] Call Trace: [43929.458118] <TASK> [43929.458121] ? __warn+0x9f/0x1a0 [43929.458127] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458188] ? report_bug+0x1b1/0x1e0 [43929.458196] ? handle_bug+0x3c/0x70 [43929.458200] ? exc_invalid_op+0x17/0x40 [43929.458211] ? nft_setelem_data_deactivate+0xd7/0xf0 [nf_tables] [43929.458271] ? nft_setelem_data_deactivate+0xe4/0xf0 [nf_tables] [43929.458332] nft_mapelem_deactivate+0x24/0x30 [nf_tables] [43929.458392] nft_rhash_walk+0xdd/0x180 [nf_tables] [43929.458453] ? __pfx_nft_rhash_walk+0x10/0x10 [nf_tables] [43929.458512] ? rb_insert_color+0x2e/0x280 [43929.458520] nft_map_deactivate+0xdc/0x1e0 [nf_tables] [43929.458582] ? __pfx_nft_map_deactivate+0x10/0x10 [nf_tables] [43929.458642] ? __pfx_nft_mapelem_deactivate+0x10/0x10 [nf_tables] [43929.458701] ? __rcu_read_unlock+0x46/0x70 [43929.458709] nft_delset+0xff/0x110 [nf_tables] [43929.458769] nft_flush_table+0x16f/0x460 [nf_tables] [43929.458830] nf_tables_deltable+0x501/0x580 [nf_tables]
- CVE-2024-27041:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix NULL checks for adev->dm.dc in amdgpu_dm_fini() Since 'adev->dm.dc' in amdgpu_dm_fini() might turn out to be NULL before the call to dc_enable_dmub_notifications(), check beforehand to ensure there will not be a possible NULL-ptr-deref there. Also, since commit 1e88eb1b2c25 ("drm/amd/display: Drop CONFIG_DRM_AMD_DC_HDCP") there are two separate checks for NULL in 'adev->dm.dc' before dc_deinit_callbacks() and dc_dmub_srv_destroy(). Clean up by combining them all under one 'if'. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE.
- CVE-2024-27042:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential out-of-bounds access in 'amdgpu_discovery_reg_base_init()' The issue arises when the array 'adev->vcn.vcn_config' is accessed before checking if the index 'adev->vcn.num_vcn_inst' is within the bounds of the array. The fix involves moving the bounds check before the array access. This ensures that 'adev->vcn.num_vcn_inst' is within the bounds of the array before it is used as an index. Fixes the below: drivers/gpu/drm/amd/amdgpu/amdgpu_discovery.c:1289 amdgpu_discovery_reg_base_init() error: testing array offset 'adev->vcn.num_vcn_inst' after use.
- CVE-2024-27056:
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: ensure offloading TID queue exists The resume code path assumes that the TX queue for the offloading TID has been configured. At resume time it then tries to sync the write pointer as it may have been updated by the firmware. In the unusual event that no packets have been send on TID 0, the queue will not have been allocated and this causes a crash. Fix this by ensuring the queue exist at suspend time.
- CVE-2024-27057:
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc4-pcm: Workaround for crashed firmware on system suspend When the system is suspended while audio is active, the sof_ipc4_pcm_hw_free() is invoked to reset the pipelines since during suspend the DSP is turned off, streams will be re-started after resume. If the firmware crashes during while audio is running (or when we reset the stream before suspend) then the sof_ipc4_set_multi_pipeline_state() will fail with IPC error and the state change is interrupted. This will cause misalignment between the kernel and firmware state on next DSP boot resulting errors returned by firmware for IPC messages, eventually failing the audio resume. On stream close the errors are ignored so the kernel state will be corrected on the next DSP boot, so the second boot after the DSP panic. If sof_ipc4_trigger_pipelines() is called from sof_ipc4_pcm_hw_free() then state parameter is SOF_IPC4_PIPE_RESET and only in this case. Treat a forced pipeline reset similarly to how we treat a pcm_free by ignoring error on state sending to allow the kernel's state to be consistent with the state the firmware will have after the next boot.
- CVE-2024-27062:
In the Linux kernel, the following vulnerability has been resolved: nouveau: lock the client object tree. It appears the client object tree has no locking unless I've missed something else. Fix races around adding/removing client objects, mostly vram bar mappings. 4562.099306] general protection fault, probably for non-canonical address 0x6677ed422bceb80c: 0000 [#1] PREEMPT SMP PTI [ 4562.099314] CPU: 2 PID: 23171 Comm: deqp-vk Not tainted 6.8.0-rc6+ #27 [ 4562.099324] Hardware name: Gigabyte Technology Co., Ltd. Z390 I AORUS PRO WIFI/Z390 I AORUS PRO WIFI-CF, BIOS F8 11/05/2021 [ 4562.099330] RIP: 0010:nvkm_object_search+0x1d/0x70 [nouveau] [ 4562.099503] Code: 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 48 89 f8 48 85 f6 74 39 48 8b 87 a0 00 00 00 48 85 c0 74 12 <48> 8b 48 f8 48 39 ce 73 15 48 8b 40 10 48 85 c0 75 ee 48 c7 c0 fe [ 4562.099506] RSP: 0000:ffffa94cc420bbf8 EFLAGS: 00010206 [ 4562.099512] RAX: 6677ed422bceb814 RBX: ffff98108791f400 RCX: ffff9810f26b8f58 [ 4562.099517] RDX: 0000000000000000 RSI: ffff9810f26b9158 RDI: ffff98108791f400 [ 4562.099519] RBP: ffff9810f26b9158 R08: 0000000000000000 R09: 0000000000000000 [ 4562.099521] R10: ffffa94cc420bc48 R11: 0000000000000001 R12: ffff9810f02a7cc0 [ 4562.099526] R13: 0000000000000000 R14: 00000000000000ff R15: 0000000000000007 [ 4562.099528] FS: 00007f629c5017c0(0000) GS:ffff98142c700000(0000) knlGS:0000000000000000 [ 4562.099534] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4562.099536] CR2: 00007f629a882000 CR3: 000000017019e004 CR4: 00000000003706f0 [ 4562.099541] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4562.099542] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4562.099544] Call Trace: [ 4562.099555] <TASK> [ 4562.099573] ? die_addr+0x36/0x90 [ 4562.099583] ? exc_general_protection+0x246/0x4a0 [ 4562.099593] ? asm_exc_general_protection+0x26/0x30 [ 4562.099600] ? nvkm_object_search+0x1d/0x70 [nouveau] [ 4562.099730] nvkm_ioctl+0xa1/0x250 [nouveau] [ 4562.099861] nvif_object_map_handle+0xc8/0x180 [nouveau] [ 4562.099986] nouveau_ttm_io_mem_reserve+0x122/0x270 [nouveau] [ 4562.100156] ? dma_resv_test_signaled+0x26/0xb0 [ 4562.100163] ttm_bo_vm_fault_reserved+0x97/0x3c0 [ttm] [ 4562.100182] ? __mutex_unlock_slowpath+0x2a/0x270 [ 4562.100189] nouveau_ttm_fault+0x69/0xb0 [nouveau] [ 4562.100356] __do_fault+0x32/0x150 [ 4562.100362] do_fault+0x7c/0x560 [ 4562.100369] __handle_mm_fault+0x800/0xc10 [ 4562.100382] handle_mm_fault+0x17c/0x3e0 [ 4562.100388] do_user_addr_fault+0x208/0x860 [ 4562.100395] exc_page_fault+0x7f/0x200 [ 4562.100402] asm_exc_page_fault+0x26/0x30 [ 4562.100412] RIP: 0033:0x9b9870 [ 4562.100419] Code: 85 a8 f7 ff ff 8b 8d 80 f7 ff ff 89 08 e9 18 f2 ff ff 0f 1f 84 00 00 00 00 00 44 89 32 e9 90 fa ff ff 0f 1f 84 00 00 00 00 00 <44> 89 32 e9 f8 f1 ff ff 0f 1f 84 00 00 00 00 00 66 44 89 32 e9 e7 [ 4562.100422] RSP: 002b:00007fff9ba2dc70 EFLAGS: 00010246 [ 4562.100426] RAX: 0000000000000004 RBX: 000000000dd65e10 RCX: 000000fff0000000 [ 4562.100428] RDX: 00007f629a882000 RSI: 00007f629a882000 RDI: 0000000000000066 [ 4562.100432] RBP: 00007fff9ba2e570 R08: 0000000000000000 R09: 0000000123ddf000 [ 4562.100434] R10: 0000000000000001 R11: 0000000000000246 R12: 000000007fffffff [ 4562.100436] R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 [ 4562.100446] </TASK> [ 4562.100448] Modules linked in: nf_conntrack_netbios_ns nf_conntrack_broadcast nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables libcrc32c nfnetlink cmac bnep sunrpc iwlmvm intel_rapl_msr intel_rapl_common snd_sof_pci_intel_cnl x86_pkg_temp_thermal intel_powerclamp snd_sof_intel_hda_common mac80211 coretemp snd_soc_acpi_intel_match kvm_intel snd_soc_acpi snd_soc_hdac_hda snd_sof_pci snd_sof_xtensa_dsp snd_sof_intel_hda_mlink ---truncated---
- CVE-2024-27079:
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Fix NULL domain on device release In the kdump kernel, the IOMMU operates in deferred_attach mode. In this mode, info->domain may not yet be assigned by the time the release_device function is called. It leads to the following crash in the crash kernel: BUG: kernel NULL pointer dereference, address: 000000000000003c ... RIP: 0010:do_raw_spin_lock+0xa/0xa0 ... _raw_spin_lock_irqsave+0x1b/0x30 intel_iommu_release_device+0x96/0x170 iommu_deinit_device+0x39/0xf0 __iommu_group_remove_device+0xa0/0xd0 iommu_bus_notifier+0x55/0xb0 notifier_call_chain+0x5a/0xd0 blocking_notifier_call_chain+0x41/0x60 bus_notify+0x34/0x50 device_del+0x269/0x3d0 pci_remove_bus_device+0x77/0x100 p2sb_bar+0xae/0x1d0 ... i801_probe+0x423/0x740 Use the release_domain mechanism to fix it. The scalable mode context entry which is not part of release domain should be cleared in release_device().
- CVE-2024-27408:
In the Linux kernel, the following vulnerability has been resolved: dmaengine: dw-edma: eDMA: Add sync read before starting the DMA transfer in remote setup The Linked list element and pointer are not stored in the same memory as the eDMA controller register. If the doorbell register is toggled before the full write of the linked list a race condition error will occur. In remote setup we can only use a readl to the memory to assure the full write has occurred.
- CVE-2024-35784:
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix deadlock with fiemap and extent locking While working on the patchset to remove extent locking I got a lockdep splat with fiemap and pagefaulting with my new extent lock replacement lock. This deadlock exists with our normal code, we just don't have lockdep annotations with the extent locking so we've never noticed it. Since we're copying the fiemap extent to user space on every iteration we have the chance of pagefaulting. Because we hold the extent lock for the entire range we could mkwrite into a range in the file that we have mmap'ed. This would deadlock with the following stack trace [<0>] lock_extent+0x28d/0x2f0 [<0>] btrfs_page_mkwrite+0x273/0x8a0 [<0>] do_page_mkwrite+0x50/0xb0 [<0>] do_fault+0xc1/0x7b0 [<0>] __handle_mm_fault+0x2fa/0x460 [<0>] handle_mm_fault+0xa4/0x330 [<0>] do_user_addr_fault+0x1f4/0x800 [<0>] exc_page_fault+0x7c/0x1e0 [<0>] asm_exc_page_fault+0x26/0x30 [<0>] rep_movs_alternative+0x33/0x70 [<0>] _copy_to_user+0x49/0x70 [<0>] fiemap_fill_next_extent+0xc8/0x120 [<0>] emit_fiemap_extent+0x4d/0xa0 [<0>] extent_fiemap+0x7f8/0xad0 [<0>] btrfs_fiemap+0x49/0x80 [<0>] __x64_sys_ioctl+0x3e1/0xb50 [<0>] do_syscall_64+0x94/0x1a0 [<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 I wrote an fstest to reproduce this deadlock without my replacement lock and verified that the deadlock exists with our existing locking. To fix this simply don't take the extent lock for the entire duration of the fiemap. This is safe in general because we keep track of where we are when we're searching the tree, so if an ordered extent updates in the middle of our fiemap call we'll still emit the correct extents because we know what offset we were on before. The only place we maintain the lock is searching delalloc. Since the delalloc stuff can change during writeback we want to lock the extent range so we have a consistent view of delalloc at the time we're checking to see if we need to set the delalloc flag. With this patch applied we no longer deadlock with my testcase.
- CVE-2024-35790:
In the Linux kernel, the following vulnerability has been resolved: usb: typec: altmodes/displayport: create sysfs nodes as driver's default device attribute group The DisplayPort driver's sysfs nodes may be present to the userspace before typec_altmode_set_drvdata() completes in dp_altmode_probe. This means that a sysfs read can trigger a NULL pointer error by deferencing dp->hpd in hpd_show or dp->lock in pin_assignment_show, as dev_get_drvdata() returns NULL in those cases. Remove manual sysfs node creation in favor of adding attribute group as default for devices bound to the driver. The ATTRIBUTE_GROUPS() macro is not used here otherwise the path to the sysfs nodes is no longer compliant with the ABI.
- CVE-2024-35794:
In the Linux kernel, the following vulnerability has been resolved: dm-raid: really frozen sync_thread during suspend 1) commit f52f5c71f3d4 ("md: fix stopping sync thread") remove MD_RECOVERY_FROZEN from __md_stop_writes() and doesn't realize that dm-raid relies on __md_stop_writes() to frozen sync_thread indirectly. Fix this problem by adding MD_RECOVERY_FROZEN in md_stop_writes(), and since stop_sync_thread() is only used for dm-raid in this case, also move stop_sync_thread() to md_stop_writes(). 2) The flag MD_RECOVERY_FROZEN doesn't mean that sync thread is frozen, it only prevent new sync_thread to start, and it can't stop the running sync thread; In order to frozen sync_thread, after seting the flag, stop_sync_thread() should be used. 3) The flag MD_RECOVERY_FROZEN doesn't mean that writes are stopped, use it as condition for md_stop_writes() in raid_postsuspend() doesn't look correct. Consider that reentrant stop_sync_thread() do nothing, always call md_stop_writes() in raid_postsuspend(). 4) raid_message can set/clear the flag MD_RECOVERY_FROZEN at anytime, and if MD_RECOVERY_FROZEN is cleared while the array is suspended, new sync_thread can start unexpected. Fix this by disallow raid_message() to change sync_thread status during suspend. Note that after commit f52f5c71f3d4 ("md: fix stopping sync thread"), the test shell/lvconvert-raid-reshape.sh start to hang in stop_sync_thread(), and with previous fixes, the test won't hang there anymore, however, the test will still fail and complain that ext4 is corrupted. And with this patch, the test won't hang due to stop_sync_thread() or fail due to ext4 is corrupted anymore. However, there is still a deadlock related to dm-raid456 that will be fixed in following patches.
- CVE-2024-35799:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Prevent crash when disable stream [Why] Disabling stream encoder invokes a function that no longer exists. [How] Check if the function declaration is NULL in disable stream encoder.
- CVE-2024-35808:
In the Linux kernel, the following vulnerability has been resolved: md/dm-raid: don't call md_reap_sync_thread() directly Currently md_reap_sync_thread() is called from raid_message() directly without holding 'reconfig_mutex', this is definitely unsafe because md_reap_sync_thread() can change many fields that is protected by 'reconfig_mutex'. However, hold 'reconfig_mutex' here is still problematic because this will cause deadlock, for example, commit 130443d60b1b ("md: refactor idle/frozen_sync_thread() to fix deadlock"). Fix this problem by using stop_sync_thread() to unregister sync_thread, like md/raid did.
- CVE-2024-35843:
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Use device rbtree in iopf reporting path The existing I/O page fault handler currently locates the PCI device by calling pci_get_domain_bus_and_slot(). This function searches the list of all PCI devices until the desired device is found. To improve lookup efficiency, replace it with device_rbtree_find() to search the device within the probed device rbtree. The I/O page fault is initiated by the device, which does not have any synchronization mechanism with the software to ensure that the device stays in the probed device tree. Theoretically, a device could be released by the IOMMU subsystem after device_rbtree_find() and before iopf_get_dev_fault_param(), which would cause a use-after-free problem. Add a mutex to synchronize the I/O page fault reporting path and the IOMMU release device path. This lock doesn't introduce any performance overhead, as the conflict between I/O page fault reporting and device releasing is very rare.
- CVE-2024-35860:
In the Linux kernel, the following vulnerability has been resolved: bpf: support deferring bpf_link dealloc to after RCU grace period BPF link for some program types is passed as a "context" which can be used by those BPF programs to look up additional information. E.g., for multi-kprobes and multi-uprobes, link is used to fetch BPF cookie values. Because of this runtime dependency, when bpf_link refcnt drops to zero there could still be active BPF programs running accessing link data. This patch adds generic support to defer bpf_link dealloc callback to after RCU GP, if requested. This is done by exposing two different deallocation callbacks, one synchronous and one deferred. If deferred one is provided, bpf_link_free() will schedule dealloc_deferred() callback to happen after RCU GP. BPF is using two flavors of RCU: "classic" non-sleepable one and RCU tasks trace one. The latter is used when sleepable BPF programs are used. bpf_link_free() accommodates that by checking underlying BPF program's sleepable flag, and goes either through normal RCU GP only for non-sleepable, or through RCU tasks trace GP *and* then normal RCU GP (taking into account rcu_trace_implies_rcu_gp() optimization), if BPF program is sleepable. We use this for multi-kprobe and multi-uprobe links, which dereference link during program run. We also preventively switch raw_tp link to use deferred dealloc callback, as upcoming changes in bpf-next tree expose raw_tp link data (specifically, cookie value) to BPF program at runtime as well.
- CVE-2024-35866:
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential UAF in cifs_dump_full_key() Skip sessions that are being teared down (status == SES_EXITING) to avoid UAF.
- CVE-2024-35869:
In the Linux kernel, the following vulnerability has been resolved: smb: client: guarantee refcounted children from parent session Avoid potential use-after-free bugs when walking DFS referrals, mounting and performing DFS failover by ensuring that all children from parent @tcon->ses are also refcounted. They're all needed across the entire DFS mount. Get rid of @tcon->dfs_ses_list while we're at it, too.
- CVE-2024-35878:
In the Linux kernel, the following vulnerability has been resolved: of: module: prevent NULL pointer dereference in vsnprintf() In of_modalias(), we can get passed the str and len parameters which would cause a kernel oops in vsnprintf() since it only allows passing a NULL ptr when the length is also 0. Also, we need to filter out the negative values of the len parameter as these will result in a really huge buffer since snprintf() takes size_t parameter while ours is ssize_t... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool.
- CVE-2024-35887:
In the Linux kernel, the following vulnerability has been resolved: ax25: fix use-after-free bugs caused by ax25_ds_del_timer When the ax25 device is detaching, the ax25_dev_device_down() calls ax25_ds_del_timer() to cleanup the slave_timer. When the timer handler is running, the ax25_ds_del_timer() that calls del_timer() in it will return directly. As a result, the use-after-free bugs could happen, one of the scenarios is shown below: (Thread 1) | (Thread 2) | ax25_ds_timeout() ax25_dev_device_down() | ax25_ds_del_timer() | del_timer() | ax25_dev_put() //FREE | | ax25_dev-> //USE In order to mitigate bugs, when the device is detaching, use timer_shutdown_sync() to stop the timer.
- CVE-2024-35904:
In the Linux kernel, the following vulnerability has been resolved: selinux: avoid dereference of garbage after mount failure In case kern_mount() fails and returns an error pointer return in the error branch instead of continuing and dereferencing the error pointer. While on it drop the never read static variable selinuxfs_mount.
- CVE-2024-35924:
In the Linux kernel, the following vulnerability has been resolved: usb: typec: ucsi: Limit read size on v1.2 Between UCSI 1.2 and UCSI 2.0, the size of the MESSAGE_IN region was increased from 16 to 256. In order to avoid overflowing reads for older systems, add a mechanism to use the read UCSI version to truncate read sizes on UCSI v1.2.
- CVE-2024-35929:
In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix WARN_ON_ONCE() in the rcu_nocb_bypass_lock() For the kernels built with CONFIG_RCU_NOCB_CPU_DEFAULT_ALL=y and CONFIG_RCU_LAZY=y, the following scenarios will trigger WARN_ON_ONCE() in the rcu_nocb_bypass_lock() and rcu_nocb_wait_contended() functions: CPU2 CPU11 kthread rcu_nocb_cb_kthread ksys_write rcu_do_batch vfs_write rcu_torture_timer_cb proc_sys_write __kmem_cache_free proc_sys_call_handler kmemleak_free drop_caches_sysctl_handler delete_object_full drop_slab __delete_object shrink_slab put_object lazy_rcu_shrink_scan call_rcu rcu_nocb_flush_bypass __call_rcu_commn rcu_nocb_bypass_lock raw_spin_trylock(&rdp->nocb_bypass_lock) fail atomic_inc(&rdp->nocb_lock_contended); rcu_nocb_wait_contended WARN_ON_ONCE(smp_processor_id() != rdp->cpu); WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)) | |_ _ _ _ _ _ _ _ _ _same rdp and rdp->cpu != 11_ _ _ _ _ _ _ _ _ __| Reproduce this bug with "echo 3 > /proc/sys/vm/drop_caches". This commit therefore uses rcu_nocb_try_flush_bypass() instead of rcu_nocb_flush_bypass() in lazy_rcu_shrink_scan(). If the nocb_bypass queue is being flushed, then rcu_nocb_try_flush_bypass will return directly.
- CVE-2024-35931:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Skip do PCI error slot reset during RAS recovery Why: The PCI error slot reset maybe triggered after inject ue to UMC multi times, this caused system hang. [ 557.371857] amdgpu 0000:af:00.0: amdgpu: GPU reset succeeded, trying to resume [ 557.373718] [drm] PCIE GART of 512M enabled. [ 557.373722] [drm] PTB located at 0x0000031FED700000 [ 557.373788] [drm] VRAM is lost due to GPU reset! [ 557.373789] [drm] PSP is resuming... [ 557.547012] mlx5_core 0000:55:00.0: mlx5_pci_err_detected Device state = 1 pci_status: 0. Exit, result = 3, need reset [ 557.547067] [drm] PCI error: detected callback, state(1)!! [ 557.547069] [drm] No support for XGMI hive yet... [ 557.548125] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 0. Enter [ 557.607763] mlx5_core 0000:55:00.0: wait vital counter value 0x16b5b after 1 iterations [ 557.607777] mlx5_core 0000:55:00.0: mlx5_pci_slot_reset Device state = 1 pci_status: 1. Exit, err = 0, result = 5, recovered [ 557.610492] [drm] PCI error: slot reset callback!! ... [ 560.689382] amdgpu 0000:3f:00.0: amdgpu: GPU reset(2) succeeded! [ 560.689546] amdgpu 0000:5a:00.0: amdgpu: GPU reset(2) succeeded! [ 560.689562] general protection fault, probably for non-canonical address 0x5f080b54534f611f: 0000 [#1] SMP NOPTI [ 560.701008] CPU: 16 PID: 2361 Comm: kworker/u448:9 Tainted: G OE 5.15.0-91-generic #101-Ubuntu [ 560.712057] Hardware name: Microsoft C278A/C278A, BIOS C2789.5.BS.1C11.AG.1 11/08/2023 [ 560.720959] Workqueue: amdgpu-reset-hive amdgpu_ras_do_recovery [amdgpu] [ 560.728887] RIP: 0010:amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu] [ 560.736891] Code: ff 41 89 c6 e9 1b ff ff ff 44 0f b6 45 b0 e9 4f ff ff ff be 01 00 00 00 4c 89 e7 e8 76 c9 8b ff 44 0f b6 45 b0 e9 3c fd ff ff <48> 83 ba 18 02 00 00 00 0f 84 6a f8 ff ff 48 8d 7a 78 be 01 00 00 [ 560.757967] RSP: 0018:ffa0000032e53d80 EFLAGS: 00010202 [ 560.763848] RAX: ffa00000001dfd10 RBX: ffa0000000197090 RCX: ffa0000032e53db0 [ 560.771856] RDX: 5f080b54534f5f07 RSI: 0000000000000000 RDI: ff11000128100010 [ 560.779867] RBP: ffa0000032e53df0 R08: 0000000000000000 R09: ffffffffffe77f08 [ 560.787879] R10: 0000000000ffff0a R11: 0000000000000001 R12: 0000000000000000 [ 560.795889] R13: ffa0000032e53e00 R14: 0000000000000000 R15: 0000000000000000 [ 560.803889] FS: 0000000000000000(0000) GS:ff11007e7e800000(0000) knlGS:0000000000000000 [ 560.812973] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 560.819422] CR2: 000055a04c118e68 CR3: 0000000007410005 CR4: 0000000000771ee0 [ 560.827433] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 560.835433] DR3: 0000000000000000 DR6: 00000000fffe07f0 DR7: 0000000000000400 [ 560.843444] PKRU: 55555554 [ 560.846480] Call Trace: [ 560.849225] <TASK> [ 560.851580] ? show_trace_log_lvl+0x1d6/0x2ea [ 560.856488] ? show_trace_log_lvl+0x1d6/0x2ea [ 560.861379] ? amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu] [ 560.867778] ? show_regs.part.0+0x23/0x29 [ 560.872293] ? __die_body.cold+0x8/0xd [ 560.876502] ? die_addr+0x3e/0x60 [ 560.880238] ? exc_general_protection+0x1c5/0x410 [ 560.885532] ? asm_exc_general_protection+0x27/0x30 [ 560.891025] ? amdgpu_device_gpu_recover.cold+0xbf1/0xcf5 [amdgpu] [ 560.898323] amdgpu_ras_do_recovery+0x1b2/0x210 [amdgpu] [ 560.904520] process_one_work+0x228/0x3d0 How: In RAS recovery, mode-1 reset is issued from RAS fatal error handling and expected all the nodes in a hive to be reset. no need to issue another mode-1 during this procedure.
- CVE-2024-35942:
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8mp-blk-ctrl: imx8mp_blk: Add fdcc clock to hdmimix domain According to i.MX8MP RM and HDMI ADD, the fdcc clock is part of hdmi rx verification IP that should not enable for HDMI TX. But actually if the clock is disabled before HDMI/LCDIF probe, LCDIF will not get pixel clock from HDMI PHY and print the error logs: [CRTC:39:crtc-2] vblank wait timed out WARNING: CPU: 2 PID: 9 at drivers/gpu/drm/drm_atomic_helper.c:1634 drm_atomic_helper_wait_for_vblanks.part.0+0x23c/0x260 Add fdcc clock to LCDIF and HDMI TX power domains to fix the issue.
- CVE-2024-35945:
In the Linux kernel, the following vulnerability has been resolved: net: phy: phy_device: Prevent nullptr exceptions on ISR If phydev->irq is set unconditionally, check for valid interrupt handler or fall back to polling mode to prevent nullptr exceptions in interrupt service routine.
- CVE-2024-35946:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix null pointer access when abort scan During cancel scan we might use vif that weren't scanning. Fix this by using the actual scanning vif.
- CVE-2024-35949:
In the Linux kernel, the following vulnerability has been resolved: btrfs: make sure that WRITTEN is set on all metadata blocks We previously would call btrfs_check_leaf() if we had the check integrity code enabled, which meant that we could only run the extended leaf checks if we had WRITTEN set on the header flags. This leaves a gap in our checking, because we could end up with corruption on disk where WRITTEN isn't set on the leaf, and then the extended leaf checks don't get run which we rely on to validate all of the item pointers to make sure we don't access memory outside of the extent buffer. However, since 732fab95abe2 ("btrfs: check-integrity: remove CONFIG_BTRFS_FS_CHECK_INTEGRITY option") we no longer call btrfs_check_leaf() from btrfs_mark_buffer_dirty(), which means we only ever call it on blocks that are being written out, and thus have WRITTEN set, or that are being read in, which should have WRITTEN set. Add checks to make sure we have WRITTEN set appropriately, and then make sure __btrfs_check_leaf() always does the item checking. This will protect us from file systems that have been corrupted and no longer have WRITTEN set on some of the blocks. This was hit on a crafted image tweaking the WRITTEN bit and reported by KASAN as out-of-bound access in the eb accessors. The example is a dir item at the end of an eb. [2.042] BTRFS warning (device loop1): bad eb member start: ptr 0x3fff start 30572544 member offset 16410 size 2 [2.040] general protection fault, probably for non-canonical address 0xe0009d1000000003: 0000 [#1] PREEMPT SMP KASAN NOPTI [2.537] KASAN: maybe wild-memory-access in range [0x0005088000000018-0x000508800000001f] [2.729] CPU: 0 PID: 2587 Comm: mount Not tainted 6.8.2 #1 [2.729] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 [2.621] RIP: 0010:btrfs_get_16+0x34b/0x6d0 [2.621] RSP: 0018:ffff88810871fab8 EFLAGS: 00000206 [2.621] RAX: 0000a11000000003 RBX: ffff888104ff8720 RCX: ffff88811b2288c0 [2.621] RDX: dffffc0000000000 RSI: ffffffff81dd8aca RDI: ffff88810871f748 [2.621] RBP: 000000000000401a R08: 0000000000000001 R09: ffffed10210e3ee9 [2.621] R10: ffff88810871f74f R11: 205d323430333737 R12: 000000000000001a [2.621] R13: 000508800000001a R14: 1ffff110210e3f5d R15: ffffffff850011e8 [2.621] FS: 00007f56ea275840(0000) GS:ffff88811b200000(0000) knlGS:0000000000000000 [2.621] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.621] CR2: 00007febd13b75c0 CR3: 000000010bb50000 CR4: 00000000000006f0 [2.621] Call Trace: [2.621] <TASK> [2.621] ? show_regs+0x74/0x80 [2.621] ? die_addr+0x46/0xc0 [2.621] ? exc_general_protection+0x161/0x2a0 [2.621] ? asm_exc_general_protection+0x26/0x30 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? btrfs_get_16+0x34b/0x6d0 [2.621] ? btrfs_get_16+0x33a/0x6d0 [2.621] ? __pfx_btrfs_get_16+0x10/0x10 [2.621] ? __pfx_mutex_unlock+0x10/0x10 [2.621] btrfs_match_dir_item_name+0x101/0x1a0 [2.621] btrfs_lookup_dir_item+0x1f3/0x280 [2.621] ? __pfx_btrfs_lookup_dir_item+0x10/0x10 [2.621] btrfs_get_tree+0xd25/0x1910 [ copy more details from report ]
- CVE-2024-35951:
In the Linux kernel, the following vulnerability has been resolved: drm/panfrost: Fix the error path in panfrost_mmu_map_fault_addr() Subject: [PATCH] drm/panfrost: Fix the error path in panfrost_mmu_map_fault_addr() If some the pages or sgt allocation failed, we shouldn't release the pages ref we got earlier, otherwise we will end up with unbalanced get/put_pages() calls. We should instead leave everything in place and let the BO release function deal with extra cleanup when the object is destroyed, or let the fault handler try again next time it's called.
- CVE-2024-35961:
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Register devlink first under devlink lock In case device is having a non fatal FW error during probe, the driver will report the error to user via devlink. This will trigger a WARN_ON, since mlx5 is calling devlink_register() last. In order to avoid the WARN_ON[1], change mlx5 to invoke devl_register() first under devlink lock. [1] WARNING: CPU: 5 PID: 227 at net/devlink/health.c:483 devlink_recover_notify.constprop.0+0xb8/0xc0 CPU: 5 PID: 227 Comm: kworker/u16:3 Not tainted 6.4.0-rc5_for_upstream_min_debug_2023_06_12_12_38 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: mlx5_health0000:08:00.0 mlx5_fw_reporter_err_work [mlx5_core] RIP: 0010:devlink_recover_notify.constprop.0+0xb8/0xc0 Call Trace: <TASK> ? __warn+0x79/0x120 ? devlink_recover_notify.constprop.0+0xb8/0xc0 ? report_bug+0x17c/0x190 ? handle_bug+0x3c/0x60 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 ? devlink_recover_notify.constprop.0+0xb8/0xc0 devlink_health_report+0x4a/0x1c0 mlx5_fw_reporter_err_work+0xa4/0xd0 [mlx5_core] process_one_work+0x1bb/0x3c0 ? process_one_work+0x3c0/0x3c0 worker_thread+0x4d/0x3c0 ? process_one_work+0x3c0/0x3c0 kthread+0xc6/0xf0 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x1f/0x30 </TASK>
- CVE-2024-35974:
In the Linux kernel, the following vulnerability has been resolved: block: fix q->blkg_list corruption during disk rebind Multiple gendisk instances can allocated/added for single request queue in case of disk rebind. blkg may still stay in q->blkg_list when calling blkcg_init_disk() for rebind, then q->blkg_list becomes corrupted. Fix the list corruption issue by: - add blkg_init_queue() to initialize q->blkg_list & q->blkcg_mutex only - move calling blkg_init_queue() into blk_alloc_queue() The list corruption should be started since commit f1c006f1c685 ("blk-cgroup: synchronize pd_free_fn() from blkg_free_workfn() and blkcg_deactivate_policy()") which delays removing blkg from q->blkg_list into blkg_free_workfn().
- CVE-2024-36013:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix slab-use-after-free in l2cap_connect() Extend a critical section to prevent chan from early freeing. Also make the l2cap_connect() return type void. Nothing is using the returned value but it is ugly to return a potentially freed pointer. Making it void will help with backports because earlier kernels did use the return value. Now the compile will break for kernels where this patch is not a complete fix. Call stack summary: [use] l2cap_bredr_sig_cmd l2cap_connect ┌ mutex_lock(&conn->chan_lock); │ chan = pchan->ops->new_connection(pchan); <- alloc chan │ __l2cap_chan_add(conn, chan); │ l2cap_chan_hold(chan); │ list_add(&chan->list, &conn->chan_l); ... (1) └ mutex_unlock(&conn->chan_lock); chan->conf_state ... (4) <- use after free [free] l2cap_conn_del ┌ mutex_lock(&conn->chan_lock); │ foreach chan in conn->chan_l: ... (2) │ l2cap_chan_put(chan); │ l2cap_chan_destroy │ kfree(chan) ... (3) <- chan freed └ mutex_unlock(&conn->chan_lock); ================================================================== BUG: KASAN: slab-use-after-free in instrument_atomic_read include/linux/instrumented.h:68 [inline] BUG: KASAN: slab-use-after-free in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline] BUG: KASAN: slab-use-after-free in l2cap_connect+0xa67/0x11a0 net/bluetooth/l2cap_core.c:4260 Read of size 8 at addr ffff88810bf040a0 by task kworker/u3:1/311
- CVE-2024-36022:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Init zone device and drm client after mode-1 reset on reload In passthrough environment, when amdgpu is reloaded after unload, mode-1 is triggered after initializing the necessary IPs, That init does not include KFD, and KFD init waits until the reset is completed. KFD init is called in the reset handler, but in this case, the zone device and drm client is not initialized, causing app to create kernel panic. v2: Removing the init KFD condition from amdgpu_amdkfd_drm_client_create. As the previous version has the potential of creating DRM client twice. v3: v2 patch results in SDMA engine hung as DRM open causes VM clear to SDMA before SDMA init. Adding the condition to in drm client creation, on top of v1, to guard against drm client creation call multiple times.
- CVE-2024-36024:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable idle reallow as part of command/gpint execution [Why] Workaroud for a race condition where DMCUB is in the process of committing to IPS1 during the handshake causing us to miss the transition into IPS2 and touch the INBOX1 RPTR causing a HW hang. [How] Disable the reallow to ensure that we have enough of a gap between entry and exit and we're not seeing back-to-back wake_and_executes.
- CVE-2024-36881:
In the Linux kernel, the following vulnerability has been resolved: mm/userfaultfd: reset ptes when close() for wr-protected ones Userfaultfd unregister includes a step to remove wr-protect bits from all the relevant pgtable entries, but that only covered an explicit UFFDIO_UNREGISTER ioctl, not a close() on the userfaultfd itself. Cover that too. This fixes a WARN trace. The only user visible side effect is the user can observe leftover wr-protect bits even if the user close()ed on an userfaultfd when releasing the last reference of it. However hopefully that should be harmless, and nothing bad should happen even if so. This change is now more important after the recent page-table-check patch we merged in mm-unstable (446dd9ad37d0 ("mm/page_table_check: support userfault wr-protect entries")), as we'll do sanity check on uffd-wp bits without vma context. So it's better if we can 100% guarantee no uffd-wp bit leftovers, to make sure each report will be valid.
- CVE-2024-36903:
In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix potential uninit-value access in __ip6_make_skb() As it was done in commit fc1092f51567 ("ipv4: Fix uninit-value access in __ip_make_skb()") for IPv4, check FLOWI_FLAG_KNOWN_NH on fl6->flowi6_flags instead of testing HDRINCL on the socket to avoid a race condition which causes uninit-value access.
- CVE-2024-36907:
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: add a missing rpc_stat for TCP TLS Commit 1548036ef120 ("nfs: make the rpc_stat per net namespace") added functionality to specify rpc_stats function but missed adding it to the TCP TLS functionality. As the result, mounting with xprtsec=tls lead to the following kernel oops. [ 128.984192] Unable to handle kernel NULL pointer dereference at virtual address 000000000000001c [ 128.985058] Mem abort info: [ 128.985372] ESR = 0x0000000096000004 [ 128.985709] EC = 0x25: DABT (current EL), IL = 32 bits [ 128.986176] SET = 0, FnV = 0 [ 128.986521] EA = 0, S1PTW = 0 [ 128.986804] FSC = 0x04: level 0 translation fault [ 128.987229] Data abort info: [ 128.987597] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [ 128.988169] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [ 128.988811] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [ 128.989302] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000106c84000 [ 128.990048] [000000000000001c] pgd=0000000000000000, p4d=0000000000000000 [ 128.990736] Internal error: Oops: 0000000096000004 [#1] SMP [ 128.991168] Modules linked in: nfs_layout_nfsv41_files rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver nfs lockd grace netfs uinput dm_mod nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 rfkill ip_set nf_tables nfnetlink qrtr vsock_loopback vmw_vsock_virtio_transport_common vmw_vsock_vmci_transport vsock sunrpc vfat fat uvcvideo videobuf2_vmalloc videobuf2_memops uvc videobuf2_v4l2 videodev videobuf2_common mc vmw_vmci xfs libcrc32c e1000e crct10dif_ce ghash_ce sha2_ce vmwgfx nvme sha256_arm64 nvme_core sr_mod cdrom sha1_ce drm_ttm_helper ttm drm_kms_helper drm sg fuse [ 128.996466] CPU: 0 PID: 179 Comm: kworker/u4:26 Kdump: loaded Not tainted 6.8.0-rc6+ #12 [ 128.997226] Hardware name: VMware, Inc. VMware20,1/VBSA, BIOS VMW201.00V.21805430.BA64.2305221830 05/22/2023 [ 128.998084] Workqueue: xprtiod xs_tcp_tls_setup_socket [sunrpc] [ 128.998701] pstate: 81400005 (Nzcv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--) [ 128.999384] pc : call_start+0x74/0x138 [sunrpc] [ 128.999809] lr : __rpc_execute+0xb8/0x3e0 [sunrpc] [ 129.000244] sp : ffff8000832b3a00 [ 129.000508] x29: ffff8000832b3a00 x28: ffff800081ac79c0 x27: ffff800081ac7000 [ 129.001111] x26: 0000000004248060 x25: 0000000000000000 x24: ffff800081596008 [ 129.001757] x23: ffff80007b087240 x22: ffff00009a509d30 x21: 0000000000000000 [ 129.002345] x20: ffff000090075600 x19: ffff00009a509d00 x18: ffffffffffffffff [ 129.002912] x17: 733d4d4554535953 x16: 42555300312d746e x15: ffff8000832b3a88 [ 129.003464] x14: ffffffffffffffff x13: ffff8000832b3a7d x12: 0000000000000008 [ 129.004021] x11: 0101010101010101 x10: ffff8000150cb560 x9 : ffff80007b087c00 [ 129.004577] x8 : ffff00009a509de0 x7 : 0000000000000000 x6 : 00000000be8c4ee3 [ 129.005026] x5 : 0000000000000000 x4 : 0000000000000000 x3 : ffff000094d56680 [ 129.005425] x2 : ffff80007b0637f8 x1 : ffff000090075600 x0 : ffff00009a509d00 [ 129.005824] Call trace: [ 129.005967] call_start+0x74/0x138 [sunrpc] [ 129.006233] __rpc_execute+0xb8/0x3e0 [sunrpc] [ 129.006506] rpc_execute+0x160/0x1d8 [sunrpc] [ 129.006778] rpc_run_task+0x148/0x1f8 [sunrpc] [ 129.007204] tls_probe+0x80/0xd0 [sunrpc] [ 129.007460] rpc_ping+0x28/0x80 [sunrpc] [ 129.007715] rpc_create_xprt+0x134/0x1a0 [sunrpc] [ 129.007999] rpc_create+0x128/0x2a0 [sunrpc] [ 129.008264] xs_tcp_tls_setup_socket+0xdc/0x508 [sunrpc] [ 129.008583] process_one_work+0x174/0x3c8 [ 129.008813] worker_thread+0x2c8/0x3e0 [ 129.009033] kthread+0x100/0x110 [ 129.009225] ret_from_fork+0x10/0x20 [ 129.009432] Code: f0ffffc2 911fe042 aa1403e1 aa1303e0 (b9401c83)
- CVE-2024-36908:
In the Linux kernel, the following vulnerability has been resolved: blk-iocost: do not WARN if iocg was already offlined In iocg_pay_debt(), warn is triggered if 'active_list' is empty, which is intended to confirm iocg is active when it has debt. However, warn can be triggered during a blkcg or disk removal, if iocg_waitq_timer_fn() is run at that time: WARNING: CPU: 0 PID: 2344971 at block/blk-iocost.c:1402 iocg_pay_debt+0x14c/0x190 Call trace: iocg_pay_debt+0x14c/0x190 iocg_kick_waitq+0x438/0x4c0 iocg_waitq_timer_fn+0xd8/0x130 __run_hrtimer+0x144/0x45c __hrtimer_run_queues+0x16c/0x244 hrtimer_interrupt+0x2cc/0x7b0 The warn in this situation is meaningless. Since this iocg is being removed, the state of the 'active_list' is irrelevant, and 'waitq_timer' is canceled after removing 'active_list' in ioc_pd_free(), which ensures iocg is freed after iocg_waitq_timer_fn() returns. Therefore, add the check if iocg was already offlined to avoid warn when removing a blkcg or disk.
- CVE-2024-36911:
In the Linux kernel, the following vulnerability has been resolved: hv_netvsc: Don't free decrypted memory In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. The netvsc driver could free decrypted/shared pages if set_memory_decrypted() fails. Check the decrypted field in the gpadl to decide whether to free the memory.
- CVE-2024-36913:
In the Linux kernel, the following vulnerability has been resolved: Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails In CoCo VMs it is possible for the untrusted host to cause set_memory_encrypted() or set_memory_decrypted() to fail such that an error is returned and the resulting memory is shared. Callers need to take care to handle these errors to avoid returning decrypted (shared) memory to the page allocator, which could lead to functional or security issues. VMBus code could free decrypted pages if set_memory_encrypted()/decrypted() fails. Leak the pages if this happens.
- CVE-2024-36921:
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: guard against invalid STA ID on removal Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would result in out-of-bounds array accesses. This prevents issues should the driver get into a bad state during error handling.
- CVE-2024-36922:
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: read txq->read_ptr under lock If we read txq->read_ptr without lock, we can read the same value twice, then obtain the lock, and reclaim from there to two different places, but crucially reclaim the same entry twice, resulting in the WARN_ONCE() a little later. Fix that by reading txq->read_ptr under lock.
- CVE-2024-36927:
In the Linux kernel, the following vulnerability has been resolved: ipv4: Fix uninit-value access in __ip_make_skb() KMSAN reported uninit-value access in __ip_make_skb() [1]. __ip_make_skb() tests HDRINCL to know if the skb has icmphdr. However, HDRINCL can cause a race condition. If calling setsockopt(2) with IP_HDRINCL changes HDRINCL while __ip_make_skb() is running, the function will access icmphdr in the skb even if it is not included. This causes the issue reported by KMSAN. Check FLOWI_FLAG_KNOWN_NH on fl4->flowi4_flags instead of testing HDRINCL on the socket. Also, fl4->fl4_icmp_type and fl4->fl4_icmp_code are not initialized. These are union in struct flowi4 and are implicitly initialized by flowi4_init_output(), but we should not rely on specific union layout. Initialize these explicitly in raw_sendmsg(). [1] BUG: KMSAN: uninit-value in __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 __ip_make_skb+0x2b74/0x2d20 net/ipv4/ip_output.c:1481 ip_finish_skb include/net/ip.h:243 [inline] ip_push_pending_frames+0x4c/0x5c0 net/ipv4/ip_output.c:1508 raw_sendmsg+0x2381/0x2690 net/ipv4/raw.c:654 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 Uninit was created at: slab_post_alloc_hook mm/slub.c:3804 [inline] slab_alloc_node mm/slub.c:3845 [inline] kmem_cache_alloc_node+0x5f6/0xc50 mm/slub.c:3888 kmalloc_reserve+0x13c/0x4a0 net/core/skbuff.c:577 __alloc_skb+0x35a/0x7c0 net/core/skbuff.c:668 alloc_skb include/linux/skbuff.h:1318 [inline] __ip_append_data+0x49ab/0x68c0 net/ipv4/ip_output.c:1128 ip_append_data+0x1e7/0x260 net/ipv4/ip_output.c:1365 raw_sendmsg+0x22b1/0x2690 net/ipv4/raw.c:648 inet_sendmsg+0x27b/0x2a0 net/ipv4/af_inet.c:851 sock_sendmsg_nosec net/socket.c:730 [inline] __sock_sendmsg+0x274/0x3c0 net/socket.c:745 __sys_sendto+0x62c/0x7b0 net/socket.c:2191 __do_sys_sendto net/socket.c:2203 [inline] __se_sys_sendto net/socket.c:2199 [inline] __x64_sys_sendto+0x130/0x200 net/socket.c:2199 do_syscall_64+0xd8/0x1f0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6d/0x75 CPU: 1 PID: 15709 Comm: syz-executor.7 Not tainted 6.8.0-11567-gb3603fcb79b1 #25 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
- CVE-2024-36949:
In the Linux kernel, the following vulnerability has been resolved: amd/amdkfd: sync all devices to wait all processes being evicted If there are more than one device doing reset in parallel, the first device will call kfd_suspend_all_processes() to evict all processes on all devices, this call takes time to finish. other device will start reset and recover without waiting. if the process has not been evicted before doing recover, it will be restored, then caused page fault.
- CVE-2024-36951:
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: range check cp bad op exception interrupts Due to a CP interrupt bug, bad packet garbage exception codes are raised. Do a range check so that the debugger and runtime do not receive garbage codes. Update the user api to guard exception code type checking as well.
- CVE-2024-36968:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: Fix div-by-zero in l2cap_le_flowctl_init() l2cap_le_flowctl_init() can cause both div-by-zero and an integer overflow since hdev->le_mtu may not fall in the valid range. Move MTU from hci_dev to hci_conn to validate MTU and stop the connection process earlier if MTU is invalid. Also, add a missing validation in read_buffer_size() and make it return an error value if the validation fails. Now hci_conn_add() returns ERR_PTR() as it can fail due to the both a kzalloc failure and invalid MTU value. divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 PID: 67 Comm: kworker/u5:0 Tainted: G W 6.9.0-rc5+ #20 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Workqueue: hci0 hci_rx_work RIP: 0010:l2cap_le_flowctl_init+0x19e/0x3f0 net/bluetooth/l2cap_core.c:547 Code: e8 17 17 0c 00 66 41 89 9f 84 00 00 00 bf 01 00 00 00 41 b8 02 00 00 00 4c 89 fe 4c 89 e2 89 d9 e8 27 17 0c 00 44 89 f0 31 d2 <66> f7 f3 89 c3 ff c3 4d 8d b7 88 00 00 00 4c 89 f0 48 c1 e8 03 42 RSP: 0018:ffff88810bc0f858 EFLAGS: 00010246 RAX: 00000000000002a0 RBX: 0000000000000000 RCX: dffffc0000000000 RDX: 0000000000000000 RSI: ffff88810bc0f7c0 RDI: ffffc90002dcb66f RBP: ffff88810bc0f880 R08: aa69db2dda70ff01 R09: 0000ffaaaaaaaaaa R10: 0084000000ffaaaa R11: 0000000000000000 R12: ffff88810d65a084 R13: dffffc0000000000 R14: 00000000000002a0 R15: ffff88810d65a000 FS: 0000000000000000(0000) GS:ffff88811ac00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020000100 CR3: 0000000103268003 CR4: 0000000000770ef0 PKRU: 55555554 Call Trace: <TASK> l2cap_le_connect_req net/bluetooth/l2cap_core.c:4902 [inline] l2cap_le_sig_cmd net/bluetooth/l2cap_core.c:5420 [inline] l2cap_le_sig_channel net/bluetooth/l2cap_core.c:5486 [inline] l2cap_recv_frame+0xe59d/0x11710 net/bluetooth/l2cap_core.c:6809 l2cap_recv_acldata+0x544/0x10a0 net/bluetooth/l2cap_core.c:7506 hci_acldata_packet net/bluetooth/hci_core.c:3939 [inline] hci_rx_work+0x5e5/0xb20 net/bluetooth/hci_core.c:4176 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0x90f/0x1530 kernel/workqueue.c:3335 worker_thread+0x926/0xe70 kernel/workqueue.c:3416 kthread+0x2e3/0x380 kernel/kthread.c:388 ret_from_fork+0x5c/0x90 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]---
- CVE-2024-38541:
In the Linux kernel, the following vulnerability has been resolved: of: module: add buffer overflow check in of_modalias() In of_modalias(), if the buffer happens to be too small even for the 1st snprintf() call, the len parameter will become negative and str parameter (if not NULL initially) will point beyond the buffer's end. Add the buffer overflow check after the 1st snprintf() call and fix such check after the strlen() call (accounting for the terminating NUL char).
- CVE-2024-38557:
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Reload only IB representors upon lag disable/enable On lag disable, the bond IB device along with all of its representors are destroyed, and then the slaves' representors get reloaded. In case the slave IB representor load fails, the eswitch error flow unloads all representors, including ethernet representors, where the netdevs get detached and removed from lag bond. Such flow is inaccurate as the lag driver is not responsible for loading/unloading ethernet representors. Furthermore, the flow described above begins by holding lag lock to prevent bond changes during disable flow. However, when reaching the ethernet representors detachment from lag, the lag lock is required again, triggering the following deadlock: Call trace: __switch_to+0xf4/0x148 __schedule+0x2c8/0x7d0 schedule+0x50/0xe0 schedule_preempt_disabled+0x18/0x28 __mutex_lock.isra.13+0x2b8/0x570 __mutex_lock_slowpath+0x1c/0x28 mutex_lock+0x4c/0x68 mlx5_lag_remove_netdev+0x3c/0x1a0 [mlx5_core] mlx5e_uplink_rep_disable+0x70/0xa0 [mlx5_core] mlx5e_detach_netdev+0x6c/0xb0 [mlx5_core] mlx5e_netdev_change_profile+0x44/0x138 [mlx5_core] mlx5e_netdev_attach_nic_profile+0x28/0x38 [mlx5_core] mlx5e_vport_rep_unload+0x184/0x1b8 [mlx5_core] mlx5_esw_offloads_rep_load+0xd8/0xe0 [mlx5_core] mlx5_eswitch_reload_reps+0x74/0xd0 [mlx5_core] mlx5_disable_lag+0x130/0x138 [mlx5_core] mlx5_lag_disable_change+0x6c/0x70 [mlx5_core] // hold ldev->lock mlx5_devlink_eswitch_mode_set+0xc0/0x410 [mlx5_core] devlink_nl_cmd_eswitch_set_doit+0xdc/0x180 genl_family_rcv_msg_doit.isra.17+0xe8/0x138 genl_rcv_msg+0xe4/0x220 netlink_rcv_skb+0x44/0x108 genl_rcv+0x40/0x58 netlink_unicast+0x198/0x268 netlink_sendmsg+0x1d4/0x418 sock_sendmsg+0x54/0x60 __sys_sendto+0xf4/0x120 __arm64_sys_sendto+0x30/0x40 el0_svc_common+0x8c/0x120 do_el0_svc+0x30/0xa0 el0_svc+0x20/0x30 el0_sync_handler+0x90/0xb8 el0_sync+0x160/0x180 Thus, upon lag enable/disable, load and unload only the IB representors of the slaves preventing the deadlock mentioned above. While at it, refactor the mlx5_esw_offloads_rep_load() function to have a static helper method for its internal logic, in symmetry with the representor unload design.
- CVE-2024-38564:
In the Linux kernel, the following vulnerability has been resolved: bpf: Add BPF_PROG_TYPE_CGROUP_SKB attach type enforcement in BPF_LINK_CREATE bpf_prog_attach uses attach_type_to_prog_type to enforce proper attach type for BPF_PROG_TYPE_CGROUP_SKB. link_create uses bpf_prog_get and relies on bpf_prog_attach_check_attach_type to properly verify prog_type <> attach_type association. Add missing attach_type enforcement for the link_create case. Otherwise, it's currently possible to attach cgroup_skb prog types to other cgroup hooks.
- CVE-2024-38570:
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix potential glock use-after-free on unmount When a DLM lockspace is released and there ares still locks in that lockspace, DLM will unlock those locks automatically. Commit fb6791d100d1b started exploiting this behavior to speed up filesystem unmount: gfs2 would simply free glocks it didn't want to unlock and then release the lockspace. This didn't take the bast callbacks for asynchronous lock contention notifications into account, which remain active until until a lock is unlocked or its lockspace is released. To prevent those callbacks from accessing deallocated objects, put the glocks that should not be unlocked on the sd_dead_glocks list, release the lockspace, and only then free those glocks. As an additional measure, ignore unexpected ast and bast callbacks if the receiving glock is dead.
- CVE-2024-38594:
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: move the EST lock to struct stmmac_priv Reinitialize the whole EST structure would also reset the mutex lock which is embedded in the EST structure, and then trigger the following warning. To address this, move the lock to struct stmmac_priv. We also need to reacquire the mutex lock when doing this initialization. DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 3 PID: 505 at kernel/locking/mutex.c:587 __mutex_lock+0xd84/0x1068 Modules linked in: CPU: 3 PID: 505 Comm: tc Not tainted 6.9.0-rc6-00053-g0106679839f7-dirty #29 Hardware name: NXP i.MX8MPlus EVK board (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : __mutex_lock+0xd84/0x1068 lr : __mutex_lock+0xd84/0x1068 sp : ffffffc0864e3570 x29: ffffffc0864e3570 x28: ffffffc0817bdc78 x27: 0000000000000003 x26: ffffff80c54f1808 x25: ffffff80c9164080 x24: ffffffc080d723ac x23: 0000000000000000 x22: 0000000000000002 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffc083bc3000 x18: ffffffffffffffff x17: ffffffc08117b080 x16: 0000000000000002 x15: ffffff80d2d40000 x14: 00000000000002da x13: ffffff80d2d404b8 x12: ffffffc082b5a5c8 x11: ffffffc082bca680 x10: ffffffc082bb2640 x9 : ffffffc082bb2698 x8 : 0000000000017fe8 x7 : c0000000ffffefff x6 : 0000000000000001 x5 : ffffff8178fe0d48 x4 : 0000000000000000 x3 : 0000000000000027 x2 : ffffff8178fe0d50 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: __mutex_lock+0xd84/0x1068 mutex_lock_nested+0x28/0x34 tc_setup_taprio+0x118/0x68c stmmac_setup_tc+0x50/0xf0 taprio_change+0x868/0xc9c
- CVE-2024-38608:
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix netif state handling mlx5e_suspend cleans resources only if netif_device_present() returns true. However, mlx5e_resume changes the state of netif, via mlx5e_nic_enable, only if reg_state == NETREG_REGISTERED. In the below case, the above leads to NULL-ptr Oops[1] and memory leaks: mlx5e_probe _mlx5e_resume mlx5e_attach_netdev mlx5e_nic_enable <-- netdev not reg, not calling netif_device_attach() register_netdev <-- failed for some reason. ERROR_FLOW: _mlx5e_suspend <-- netif_device_present return false, resources aren't freed :( Hence, clean resources in this case as well. [1] BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0010 [#1] SMP CPU: 2 PID: 9345 Comm: test-ovs-ct-gen Not tainted 6.5.0_for_upstream_min_debug_2023_09_05_16_01 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:0x0 Code: Unable to access opcode bytes at0xffffffffffffffd6. RSP: 0018:ffff888178aaf758 EFLAGS: 00010246 Call Trace: <TASK> ? __die+0x20/0x60 ? page_fault_oops+0x14c/0x3c0 ? exc_page_fault+0x75/0x140 ? asm_exc_page_fault+0x22/0x30 notifier_call_chain+0x35/0xb0 blocking_notifier_call_chain+0x3d/0x60 mlx5_blocking_notifier_call_chain+0x22/0x30 [mlx5_core] mlx5_core_uplink_netdev_event_replay+0x3e/0x60 [mlx5_core] mlx5_mdev_netdev_track+0x53/0x60 [mlx5_ib] mlx5_ib_roce_init+0xc3/0x340 [mlx5_ib] __mlx5_ib_add+0x34/0xd0 [mlx5_ib] mlx5r_probe+0xe1/0x210 [mlx5_ib] ? auxiliary_match_id+0x6a/0x90 auxiliary_bus_probe+0x38/0x80 ? driver_sysfs_add+0x51/0x80 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 bus_probe_device+0x86/0xa0 device_add+0x637/0x840 __auxiliary_device_add+0x3b/0xa0 add_adev+0xc9/0x140 [mlx5_core] mlx5_rescan_drivers_locked+0x22a/0x310 [mlx5_core] mlx5_register_device+0x53/0xa0 [mlx5_core] mlx5_init_one_devl_locked+0x5c4/0x9c0 [mlx5_core] mlx5_init_one+0x3b/0x60 [mlx5_core] probe_one+0x44c/0x730 [mlx5_core] local_pci_probe+0x3e/0x90 pci_device_probe+0xbf/0x210 ? kernfs_create_link+0x5d/0xa0 ? sysfs_do_create_link_sd+0x60/0xc0 really_probe+0xc9/0x3e0 ? driver_probe_device+0x90/0x90 __driver_probe_device+0x80/0x160 driver_probe_device+0x1e/0x90 __device_attach_driver+0x7d/0x100 bus_for_each_drv+0x80/0xd0 __device_attach+0xbc/0x1f0 pci_bus_add_device+0x54/0x80 pci_iov_add_virtfn+0x2e6/0x320 sriov_enable+0x208/0x420 mlx5_core_sriov_configure+0x9e/0x200 [mlx5_core] sriov_numvfs_store+0xae/0x1a0 kernfs_fop_write_iter+0x10c/0x1a0 vfs_write+0x291/0x3c0 ksys_write+0x5f/0xe0 do_syscall_64+0x3d/0x90 entry_SYSCALL_64_after_hwframe+0x46/0xb0 CR2: 0000000000000000 ---[ end trace 0000000000000000 ]---
- CVE-2024-38611:
In the Linux kernel, the following vulnerability has been resolved: media: i2c: et8ek8: Don't strip remove function when driver is builtin Using __exit for the remove function results in the remove callback being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets unbound (e.g. using sysfs or hotplug), the driver is just removed without the cleanup being performed. This results in resource leaks. Fix it by compiling in the remove callback unconditionally. This also fixes a W=1 modpost warning: WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text)
- CVE-2024-38620:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: HCI: Remove HCI_AMP support Since BT_HS has been remove HCI_AMP controllers no longer has any use so remove it along with the capability of creating AMP controllers. Since we no longer need to differentiate between AMP and Primary controllers, as only HCI_PRIMARY is left, this also remove hdev->dev_type altogether.
- CVE-2024-38622:
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add callback function pointer check before its call In dpu_core_irq_callback_handler() callback function pointer is compared to NULL, but then callback function is unconditionally called by this pointer. Fix this bug by adding conditional return. Found by Linux Verification Center (linuxtesting.org) with SVACE. Patchwork: https://patchwork.freedesktop.org/patch/588237/
- CVE-2024-38625:
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Check 'folio' pointer for NULL It can be NULL if bmap is called.
- CVE-2024-38630:
In the Linux kernel, the following vulnerability has been resolved: watchdog: cpu5wdt.c: Fix use-after-free bug caused by cpu5wdt_trigger When the cpu5wdt module is removing, the origin code uses del_timer() to de-activate the timer. If the timer handler is running, del_timer() could not stop it and will return directly. If the port region is released by release_region() and then the timer handler cpu5wdt_trigger() calls outb() to write into the region that is released, the use-after-free bug will happen. Change del_timer() to timer_shutdown_sync() in order that the timer handler could be finished before the port region is released.
- CVE-2024-39479:
In the Linux kernel, the following vulnerability has been resolved: drm/i915/hwmon: Get rid of devm When both hwmon and hwmon drvdata (on which hwmon depends) are device managed resources, the expectation, on device unbind, is that hwmon will be released before drvdata. However, in i915 there are two separate code paths, which both release either drvdata or hwmon and either can be released before the other. These code paths (for device unbind) are as follows (see also the bug referenced below): Call Trace: release_nodes+0x11/0x70 devres_release_group+0xb2/0x110 component_unbind_all+0x8d/0xa0 component_del+0xa5/0x140 intel_pxp_tee_component_fini+0x29/0x40 [i915] intel_pxp_fini+0x33/0x80 [i915] i915_driver_remove+0x4c/0x120 [i915] i915_pci_remove+0x19/0x30 [i915] pci_device_remove+0x32/0xa0 device_release_driver_internal+0x19c/0x200 unbind_store+0x9c/0xb0 and Call Trace: release_nodes+0x11/0x70 devres_release_all+0x8a/0xc0 device_unbind_cleanup+0x9/0x70 device_release_driver_internal+0x1c1/0x200 unbind_store+0x9c/0xb0 This means that in i915, if use devm, we cannot gurantee that hwmon will always be released before drvdata. Which means that we have a uaf if hwmon sysfs is accessed when drvdata has been released but hwmon hasn't. The only way out of this seems to be do get rid of devm_ and release/free everything explicitly during device unbind. v2: Change commit message and other minor code changes v3: Cleanup from i915_hwmon_register on error (Armin Wolf) v4: Eliminate potential static analyzer warning (Rodrigo) Eliminate fetch_and_zero (Jani) v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi)
- CVE-2024-39508:
In the Linux kernel, the following vulnerability has been resolved: io_uring/io-wq: Use set_bit() and test_bit() at worker->flags Utilize set_bit() and test_bit() on worker->flags within io_uring/io-wq to address potential data races. The structure io_worker->flags may be accessed through various data paths, leading to concurrency issues. When KCSAN is enabled, it reveals data races occurring in io_worker_handle_work and io_wq_activate_free_worker functions. BUG: KCSAN: data-race in io_worker_handle_work / io_wq_activate_free_worker write to 0xffff8885c4246404 of 4 bytes by task 49071 on cpu 28: io_worker_handle_work (io_uring/io-wq.c:434 io_uring/io-wq.c:569) io_wq_worker (io_uring/io-wq.c:?) <snip> read to 0xffff8885c4246404 of 4 bytes by task 49024 on cpu 5: io_wq_activate_free_worker (io_uring/io-wq.c:? io_uring/io-wq.c:285) io_wq_enqueue (io_uring/io-wq.c:947) io_queue_iowq (io_uring/io_uring.c:524) io_req_task_submit (io_uring/io_uring.c:1511) io_handle_tw_list (io_uring/io_uring.c:1198) <snip> Line numbers against commit 18daea77cca6 ("Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm"). These races involve writes and reads to the same memory location by different tasks running on different CPUs. To mitigate this, refactor the code to use atomic operations such as set_bit(), test_bit(), and clear_bit() instead of basic "and" and "or" operations. This ensures thread-safe manipulation of worker flags. Also, move `create_index` to avoid holes in the structure.
- CVE-2024-40945:
In the Linux kernel, the following vulnerability has been resolved: iommu: Return right value in iommu_sva_bind_device() iommu_sva_bind_device() should return either a sva bond handle or an ERR_PTR value in error cases. Existing drivers (idxd and uacce) only check the return value with IS_ERR(). This could potentially lead to a kernel NULL pointer dereference issue if the function returns NULL instead of an error pointer. In reality, this doesn't cause any problems because iommu_sva_bind_device() only returns NULL when the kernel is not configured with CONFIG_IOMMU_SVA. In this case, iommu_dev_enable_feature(dev, IOMMU_DEV_FEAT_SVA) will return an error, and the device drivers won't call iommu_sva_bind_device() at all.
- CVE-2024-40965:
In the Linux kernel, the following vulnerability has been resolved: i2c: lpi2c: Avoid calling clk_get_rate during transfer Instead of repeatedly calling clk_get_rate for each transfer, lock the clock rate and cache the value. A deadlock has been observed while adding tlv320aic32x4 audio codec to the system. When this clock provider adds its clock, the clk mutex is locked already, it needs to access i2c, which in return needs the mutex for clk_get_rate as well.
- CVE-2024-40969:
In the Linux kernel, the following vulnerability has been resolved: f2fs: don't set RO when shutting down f2fs Shutdown does not check the error of thaw_super due to readonly, which causes a deadlock like below. f2fs_ioc_shutdown(F2FS_GOING_DOWN_FULLSYNC) issue_discard_thread - bdev_freeze - freeze_super - f2fs_stop_checkpoint() - f2fs_handle_critical_error - sb_start_write - set RO - waiting - bdev_thaw - thaw_super_locked - return -EINVAL, if sb_rdonly() - f2fs_stop_discard_thread -> wait for kthread_stop(discard_thread);
- CVE-2024-40973:
In the Linux kernel, the following vulnerability has been resolved: media: mtk-vcodec: potential null pointer deference in SCP The return value of devm_kzalloc() needs to be checked to avoid NULL pointer deference. This is similar to CVE-2022-3113.
- CVE-2024-40975:
In the Linux kernel, the following vulnerability has been resolved: platform/x86: x86-android-tablets: Unregister devices in reverse order Not all subsystems support a device getting removed while there are still consumers of the device with a reference to the device. One example of this is the regulator subsystem. If a regulator gets unregistered while there are still drivers holding a reference a WARN() at drivers/regulator/core.c:5829 triggers, e.g.: WARNING: CPU: 1 PID: 1587 at drivers/regulator/core.c:5829 regulator_unregister Hardware name: Intel Corp. VALLEYVIEW C0 PLATFORM/BYT-T FFD8, BIOS BLADE_21.X64.0005.R00.1504101516 FFD8_X64_R_2015_04_10_1516 04/10/2015 RIP: 0010:regulator_unregister Call Trace: <TASK> regulator_unregister devres_release_group i2c_device_remove device_release_driver_internal bus_remove_device device_del device_unregister x86_android_tablet_remove On the Lenovo Yoga Tablet 2 series the bq24190 charger chip also provides a 5V boost converter output for powering USB devices connected to the micro USB port, the bq24190-charger driver exports this as a Vbus regulator. On the 830 (8") and 1050 ("10") models this regulator is controlled by a platform_device and x86_android_tablet_remove() removes platform_device-s before i2c_clients so the consumer gets removed first. But on the 1380 (13") model there is a lc824206xa micro-USB switch connected over I2C and the extcon driver for that controls the regulator. The bq24190 i2c-client *must* be registered first, because that creates the regulator with the lc824206xa listed as its consumer. If the regulator has not been registered yet the lc824206xa driver will end up getting a dummy regulator. Since in this case both the regulator provider and consumer are I2C devices, the only way to ensure that the consumer is unregistered first is to unregister the I2C devices in reverse order of in which they were created. For consistency and to avoid similar problems in the future change x86_android_tablet_remove() to unregister all device types in reverse order.
- CVE-2024-40998:
In the Linux kernel, the following vulnerability has been resolved: ext4: fix uninitialized ratelimit_state->lock access in __ext4_fill_super() In the following concurrency we will access the uninitialized rs->lock: ext4_fill_super ext4_register_sysfs // sysfs registered msg_ratelimit_interval_ms // Other processes modify rs->interval to // non-zero via msg_ratelimit_interval_ms ext4_orphan_cleanup ext4_msg(sb, KERN_INFO, "Errors on filesystem, " __ext4_msg ___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state) if (!rs->interval) // do nothing if interval is 0 return 1; raw_spin_trylock_irqsave(&rs->lock, flags) raw_spin_trylock(lock) _raw_spin_trylock __raw_spin_trylock spin_acquire(&lock->dep_map, 0, 1, _RET_IP_) lock_acquire __lock_acquire register_lock_class assign_lock_key dump_stack(); ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10); raw_spin_lock_init(&rs->lock); // init rs->lock here and get the following dump_stack: ========================================================= INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. CPU: 12 PID: 753 Comm: mount Tainted: G E 6.7.0-rc6-next-20231222 #504 [...] Call Trace: dump_stack_lvl+0xc5/0x170 dump_stack+0x18/0x30 register_lock_class+0x740/0x7c0 __lock_acquire+0x69/0x13a0 lock_acquire+0x120/0x450 _raw_spin_trylock+0x98/0xd0 ___ratelimit+0xf6/0x220 __ext4_msg+0x7f/0x160 [ext4] ext4_orphan_cleanup+0x665/0x740 [ext4] __ext4_fill_super+0x21ea/0x2b10 [ext4] ext4_fill_super+0x14d/0x360 [ext4] [...] ========================================================= Normally interval is 0 until s_msg_ratelimit_state is initialized, so ___ratelimit() does nothing. But registering sysfs precedes initializing rs->lock, so it is possible to change rs->interval to a non-zero value via the msg_ratelimit_interval_ms interface of sysfs while rs->lock is uninitialized, and then a call to ext4_msg triggers the problem by accessing an uninitialized rs->lock. Therefore register sysfs after all initializations are complete to avoid such problems.
- CVE-2024-40999:
In the Linux kernel, the following vulnerability has been resolved: net: ena: Add validation for completion descriptors consistency Validate that `first` flag is set only for the first descriptor in multi-buffer packets. In case of an invalid descriptor, a reset will occur. A new reset reason for RX data corruption has been added.
- CVE-2024-41008:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: change vm->task_info handling This patch changes the handling and lifecycle of vm->task_info object. The major changes are: - vm->task_info is a dynamically allocated ptr now, and its uasge is reference counted. - introducing two new helper funcs for task_info lifecycle management - amdgpu_vm_get_task_info: reference counts up task_info before returning this info - amdgpu_vm_put_task_info: reference counts down task_info - last put to task_info() frees task_info from the vm. This patch also does logistical changes required for existing usage of vm->task_info. V2: Do not block all the prints when task_info not found (Felix) V3: Fixed review comments from Felix - Fix wrong indentation - No debug message for -ENOMEM - Add NULL check for task_info - Do not duplicate the debug messages (ti vs no ti) - Get first reference of task_info in vm_init(), put last in vm_fini() V4: Fixed review comments from Felix - fix double reference increment in create_task_info - change amdgpu_vm_get_task_info_pasid - additional changes in amdgpu_gem.c while porting
- CVE-2024-41013:
In the Linux kernel, the following vulnerability has been resolved: xfs: don't walk off the end of a directory data block This adds sanity checks for xfs_dir2_data_unused and xfs_dir2_data_entry to make sure don't stray beyond valid memory region. Before patching, the loop simply checks that the start offset of the dup and dep is within the range. So in a crafted image, if last entry is xfs_dir2_data_unused, we can change dup->length to dup->length-1 and leave 1 byte of space. In the next traversal, this space will be considered as dup or dep. We may encounter an out of bound read when accessing the fixed members. In the patch, we make sure that the remaining bytes large enough to hold an unused entry before accessing xfs_dir2_data_unused and xfs_dir2_data_unused is XFS_DIR2_DATA_ALIGN byte aligned. We also make sure that the remaining bytes large enough to hold a dirent with a single-byte name before accessing xfs_dir2_data_entry.
- CVE-2024-41023:
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: Fix task_struct reference leak During the execution of the following stress test with linux-rt: stress-ng --cyclic 30 --timeout 30 --minimize --quiet kmemleak frequently reported a memory leak concerning the task_struct: unreferenced object 0xffff8881305b8000 (size 16136): comm "stress-ng", pid 614, jiffies 4294883961 (age 286.412s) object hex dump (first 32 bytes): 02 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .@.............. 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ debug hex dump (first 16 bytes): 53 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 S............... backtrace: [<00000000046b6790>] dup_task_struct+0x30/0x540 [<00000000c5ca0f0b>] copy_process+0x3d9/0x50e0 [<00000000ced59777>] kernel_clone+0xb0/0x770 [<00000000a50befdc>] __do_sys_clone+0xb6/0xf0 [<000000001dbf2008>] do_syscall_64+0x5d/0xf0 [<00000000552900ff>] entry_SYSCALL_64_after_hwframe+0x6e/0x76 The issue occurs in start_dl_timer(), which increments the task_struct reference count and sets a timer. The timer callback, dl_task_timer, is supposed to decrement the reference count upon expiration. However, if enqueue_task_dl() is called before the timer expires and cancels it, the reference count is not decremented, leading to the leak. This patch fixes the reference leak by ensuring the task_struct reference count is properly decremented when the timer is canceled.
- CVE-2024-41031:
In the Linux kernel, the following vulnerability has been resolved: mm/filemap: skip to create PMD-sized page cache if needed On ARM64, HPAGE_PMD_ORDER is 13 when the base page size is 64KB. The PMD-sized page cache can't be supported by xarray as the following error messages indicate. ------------[ cut here ]------------ WARNING: CPU: 35 PID: 7484 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm \ fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \ sha1_ce virtio_net net_failover virtio_console virtio_blk failover \ dimlib virtio_mmio CPU: 35 PID: 7484 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x720 sp : ffff800087a4f6c0 x29: ffff800087a4f6c0 x28: ffff800087a4f720 x27: 000000001fffffff x26: 0000000000000c40 x25: 000000000000000d x24: ffff00010625b858 x23: ffff800087a4f720 x22: ffffffdfc0780000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0780000 x18: 000000001ff40000 x17: 00000000ffffffff x16: 0000018000000000 x15: 51ec004000000000 x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020 x11: 51ec000000000000 x10: 51ece1c0ffff8000 x9 : ffffbeb961a44d28 x8 : 0000000000000003 x7 : ffffffdfc0456420 x6 : ffff0000e1aa6eb8 x5 : 20bf08b4fe778fca x4 : ffffffdfc0456420 x3 : 0000000000000c40 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x720 truncate_inode_partial_folio+0xdc/0x160 truncate_inode_pages_range+0x1b4/0x4a8 truncate_pagecache_range+0x84/0xa0 xfs_flush_unmap_range+0x70/0x90 [xfs] xfs_file_fallocate+0xfc/0x4d8 [xfs] vfs_fallocate+0x124/0x2e8 ksys_fallocate+0x4c/0xa0 __arm64_sys_fallocate+0x24/0x38 invoke_syscall.constprop.0+0x7c/0xd8 do_el0_svc+0xb4/0xd0 el0_svc+0x44/0x1d8 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Fix it by skipping to allocate PMD-sized page cache when its size is larger than MAX_PAGECACHE_ORDER. For this specific case, we will fall to regular path where the readahead window is determined by BDI's sysfs file (read_ahead_kb).
- CVE-2024-41045:
In the Linux kernel, the following vulnerability has been resolved: bpf: Defer work in bpf_timer_cancel_and_free Currently, the same case as previous patch (two timer callbacks trying to cancel each other) can be invoked through bpf_map_update_elem as well, or more precisely, freeing map elements containing timers. Since this relies on hrtimer_cancel as well, it is prone to the same deadlock situation as the previous patch. It would be sufficient to use hrtimer_try_to_cancel to fix this problem, as the timer cannot be enqueued after async_cancel_and_free. Once async_cancel_and_free has been done, the timer must be reinitialized before it can be armed again. The callback running in parallel trying to arm the timer will fail, and freeing bpf_hrtimer without waiting is sufficient (given kfree_rcu), and bpf_timer_cb will return HRTIMER_NORESTART, preventing the timer from being rearmed again. However, there exists a UAF scenario where the callback arms the timer before entering this function, such that if cancellation fails (due to timer callback invoking this routine, or the target timer callback running concurrently). In such a case, if the timer expiration is significantly far in the future, the RCU grace period expiration happening before it will free the bpf_hrtimer state and along with it the struct hrtimer, that is enqueued. Hence, it is clear cancellation needs to occur after async_cancel_and_free, and yet it cannot be done inline due to deadlock issues. We thus modify bpf_timer_cancel_and_free to defer work to the global workqueue, adding a work_struct alongside rcu_head (both used at _different_ points of time, so can share space). Update existing code comments to reflect the new state of affairs.
- CVE-2024-41067:
In the Linux kernel, the following vulnerability has been resolved: btrfs: scrub: handle RST lookup error correctly [BUG] When running btrfs/060 with forced RST feature, it would crash the following ASSERT() inside scrub_read_endio(): ASSERT(sector_nr < stripe->nr_sectors); Before that, we would have tree dump from btrfs_get_raid_extent_offset(), as we failed to find the RST entry for the range. [CAUSE] Inside scrub_submit_extent_sector_read() every time we allocated a new bbio we immediately called btrfs_map_block() to make sure there was some RST range covering the scrub target. But if btrfs_map_block() fails, we immediately call endio for the bbio, while the bbio is newly allocated, it's completely empty. Then inside scrub_read_endio(), we go through the bvecs to find the sector number (as bi_sector is no longer reliable if the bio is submitted to lower layers). And since the bio is empty, such bvecs iteration would not find any sector matching the sector, and return sector_nr == stripe->nr_sectors, triggering the ASSERT(). [FIX] Instead of calling btrfs_map_block() after allocating a new bbio, call btrfs_map_block() first. Since our only objective of calling btrfs_map_block() is only to update stripe_len, there is really no need to do that after btrfs_alloc_bio(). This new timing would avoid the problem of handling empty bbio completely, and in fact fixes a possible race window for the old code, where if the submission thread is the only owner of the pending_io, the scrub would never finish (since we didn't decrease the pending_io counter). Although the root cause of RST lookup failure still needs to be addressed.
- CVE-2024-41082:
In the Linux kernel, the following vulnerability has been resolved: nvme-fabrics: use reserved tag for reg read/write command In some scenarios, if too many commands are issued by nvme command in the same time by user tasks, this may exhaust all tags of admin_q. If a reset (nvme reset or IO timeout) occurs before these commands finish, reconnect routine may fail to update nvme regs due to insufficient tags, which will cause kernel hang forever. In order to workaround this issue, maybe we can let reg_read32()/reg_read64()/reg_write32() use reserved tags. This maybe safe for nvmf: 1. For the disable ctrl path, we will not issue connect command 2. For the enable ctrl / fw activate path, since connect and reg_xx() are called serially. So the reserved tags may still be enough while reg_xx() use reserved tags.
- CVE-2024-41935:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to shrink read extent node in batches We use rwlock to protect core structure data of extent tree during its shrink, however, if there is a huge number of extent nodes in extent tree, during shrink of extent tree, it may hold rwlock for a very long time, which may trigger kernel hang issue. This patch fixes to shrink read extent node in batches, so that, critical region of the rwlock can be shrunk to avoid its extreme long time hold.
- CVE-2024-42067:
In the Linux kernel, the following vulnerability has been resolved: bpf: Take return from set_memory_rox() into account with bpf_jit_binary_lock_ro() set_memory_rox() can fail, leaving memory unprotected. Check return and bail out when bpf_jit_binary_lock_ro() returns an error.
- CVE-2024-42069:
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix possible double free in error handling path When auxiliary_device_add() returns error and then calls auxiliary_device_uninit(), callback function adev_release calls kfree(madev). We shouldn't call kfree(madev) again in the error handling path. Set 'madev' to NULL.
- CVE-2024-42079:
In the Linux kernel, the following vulnerability has been resolved: gfs2: Fix NULL pointer dereference in gfs2_log_flush In gfs2_jindex_free(), set sdp->sd_jdesc to NULL under the log flush lock to provide exclusion against gfs2_log_flush(). In gfs2_log_flush(), check if sdp->sd_jdesc is non-NULL before dereferencing it. Otherwise, we could run into a NULL pointer dereference when outstanding glock work races with an unmount (glock_work_func -> run_queue -> do_xmote -> inode_go_sync -> gfs2_log_flush).
- CVE-2024-42107:
In the Linux kernel, the following vulnerability has been resolved: ice: Don't process extts if PTP is disabled The ice_ptp_extts_event() function can race with ice_ptp_release() and result in a NULL pointer dereference which leads to a kernel panic. Panic occurs because the ice_ptp_extts_event() function calls ptp_clock_event() with a NULL pointer. The ice driver has already released the PTP clock by the time the interrupt for the next external timestamp event occurs. To fix this, modify the ice_ptp_extts_event() function to check the PTP state and bail early if PTP is not ready.
- CVE-2024-42118:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Do not return negative stream id for array [WHY] resource_stream_to_stream_idx returns an array index and it return -1 when not found; however, -1 is not a valid array index number. [HOW] When this happens, call ASSERT(), and return a zero instead. This fixes an OVERRUN and an NEGATIVE_RETURNS issues reported by Coverity.
- CVE-2024-42122:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL pointer check for kzalloc [Why & How] Check return pointer of kzalloc before using it.
- CVE-2024-42123:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix double free err_addr pointer warnings In amdgpu_umc_bad_page_polling_timeout, the amdgpu_umc_handle_bad_pages will be run many times so that double free err_addr in some special case. So set the err_addr to NULL to avoid the warnings.
- CVE-2024-42125:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fw: scan offload prohibit all 6 GHz channel if no 6 GHz sband We have some policy via BIOS to block uses of 6 GHz. In this case, 6 GHz sband will be NULL even if it is WiFi 7 chip. So, add NULL handling here to avoid crash.
- CVE-2024-42128:
In the Linux kernel, the following vulnerability has been resolved: leds: an30259a: Use devm_mutex_init() for mutex initialization In this driver LEDs are registered using devm_led_classdev_register() so they are automatically unregistered after module's remove() is done. led_classdev_unregister() calls module's led_set_brightness() to turn off the LEDs and that callback uses mutex which was destroyed already in module's remove() so use devm API instead.
- CVE-2024-42129:
In the Linux kernel, the following vulnerability has been resolved: leds: mlxreg: Use devm_mutex_init() for mutex initialization In this driver LEDs are registered using devm_led_classdev_register() so they are automatically unregistered after module's remove() is done. led_classdev_unregister() calls module's led_set_brightness() to turn off the LEDs and that callback uses mutex which was destroyed already in module's remove() so use devm API instead.
- CVE-2024-42134:
In the Linux kernel, the following vulnerability has been resolved: virtio-pci: Check if is_avq is NULL [bug] In the virtio_pci_common.c function vp_del_vqs, vp_dev->is_avq is involved to determine whether it is admin virtqueue, but this function vp_dev->is_avq may be empty. For installations, virtio_pci_legacy does not assign a value to vp_dev->is_avq. [fix] Check whether it is vp_dev->is_avq before use. [test] Test with virsh Attach device Before this patch, the following command would crash the guest system After applying the patch, everything seems to be working fine.
- CVE-2024-42135:
In the Linux kernel, the following vulnerability has been resolved: vhost_task: Handle SIGKILL by flushing work and exiting Instead of lingering until the device is closed, this has us handle SIGKILL by: 1. marking the worker as killed so we no longer try to use it with new virtqueues and new flush operations. 2. setting the virtqueue to worker mapping so no new works are queued. 3. running all the exiting works.
- CVE-2024-42139:
In the Linux kernel, the following vulnerability has been resolved: ice: Fix improper extts handling Extts events are disabled and enabled by the application ts2phc. However, in case where the driver is removed when the application is running, a specific extts event remains enabled and can cause a kernel crash. As a side effect, when the driver is reloaded and application is started again, remaining extts event for the channel from a previous run will keep firing and the message "extts on unexpected channel" might be printed to the user. To avoid that, extts events shall be disabled when PTP is released.
- CVE-2024-42151:
In the Linux kernel, the following vulnerability has been resolved: bpf: mark bpf_dummy_struct_ops.test_1 parameter as nullable Test case dummy_st_ops/dummy_init_ret_value passes NULL as the first parameter of the test_1() function. Mark this parameter as nullable to make verifier aware of such possibility. Otherwise, NULL check in the test_1() code: SEC("struct_ops/test_1") int BPF_PROG(test_1, struct bpf_dummy_ops_state *state) { if (!state) return ...; ... access state ... } Might be removed by verifier, thus triggering NULL pointer dereference under certain conditions.
- CVE-2024-42155:
In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of protected- and secure-keys Although the clear-key of neither protected- nor secure-keys is accessible, this key material should only be visible to the calling process. So wipe all copies of protected- or secure-keys from stack, even in case of an error.
- CVE-2024-42156:
In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Wipe copies of clear-key structures on failure Wipe all sensitive data from stack for all IOCTLs, which convert a clear-key into a protected- or secure-key.
- CVE-2024-42158:
In the Linux kernel, the following vulnerability has been resolved: s390/pkey: Use kfree_sensitive() to fix Coccinelle warnings Replace memzero_explicit() and kfree() with kfree_sensitive() to fix warnings reported by Coccinelle: WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1506) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1643) WARNING opportunity for kfree_sensitive/kvfree_sensitive (line 1770)
- CVE-2024-42162:
In the Linux kernel, the following vulnerability has been resolved: gve: Account for stopped queues when reading NIC stats We now account for the fact that the NIC might send us stats for a subset of queues. Without this change, gve_get_ethtool_stats might make an invalid access on the priv->stats_report->stats array.
- CVE-2024-42239:
In the Linux kernel, the following vulnerability has been resolved: bpf: Fail bpf_timer_cancel when callback is being cancelled Given a schedule: timer1 cb timer2 cb bpf_timer_cancel(timer2); bpf_timer_cancel(timer1); Both bpf_timer_cancel calls would wait for the other callback to finish executing, introducing a lockup. Add an atomic_t count named 'cancelling' in bpf_hrtimer. This keeps track of all in-flight cancellation requests for a given BPF timer. Whenever cancelling a BPF timer, we must check if we have outstanding cancellation requests, and if so, we must fail the operation with an error (-EDEADLK) since cancellation is synchronous and waits for the callback to finish executing. This implies that we can enter a deadlock situation involving two or more timer callbacks executing in parallel and attempting to cancel one another. Note that we avoid incrementing the cancelling counter for the target timer (the one being cancelled) if bpf_timer_cancel is not invoked from a callback, to avoid spurious errors. The whole point of detecting cur->cancelling and returning -EDEADLK is to not enter a busy wait loop (which may or may not lead to a lockup). This does not apply in case the caller is in a non-callback context, the other side can continue to cancel as it sees fit without running into errors. Background on prior attempts: Earlier versions of this patch used a bool 'cancelling' bit and used the following pattern under timer->lock to publish cancellation status. lock(t->lock); t->cancelling = true; mb(); if (cur->cancelling) return -EDEADLK; unlock(t->lock); hrtimer_cancel(t->timer); t->cancelling = false; The store outside the critical section could overwrite a parallel requests t->cancelling assignment to true, to ensure the parallely executing callback observes its cancellation status. It would be necessary to clear this cancelling bit once hrtimer_cancel is done, but lack of serialization introduced races. Another option was explored where bpf_timer_start would clear the bit when (re)starting the timer under timer->lock. This would ensure serialized access to the cancelling bit, but may allow it to be cleared before in-flight hrtimer_cancel has finished executing, such that lockups can occur again. Thus, we choose an atomic counter to keep track of all outstanding cancellation requests and use it to prevent lockups in case callbacks attempt to cancel each other while executing in parallel.
- CVE-2024-42241:
In the Linux kernel, the following vulnerability has been resolved: mm/shmem: disable PMD-sized page cache if needed For shmem files, it's possible that PMD-sized page cache can't be supported by xarray. For example, 512MB page cache on ARM64 when the base page size is 64KB can't be supported by xarray. It leads to errors as the following messages indicate when this sort of xarray entry is split. WARNING: CPU: 34 PID: 7578 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: binfmt_misc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 \ nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject \ nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse xfs \ libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 sha1_ce virtio_net \ net_failover virtio_console virtio_blk failover dimlib virtio_mmio CPU: 34 PID: 7578 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x720 sp : ffff8000882af5f0 x29: ffff8000882af5f0 x28: ffff8000882af650 x27: ffff8000882af768 x26: 0000000000000cc0 x25: 000000000000000d x24: ffff00010625b858 x23: ffff8000882af650 x22: ffffffdfc0900000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0900000 x18: 0000000000000000 x17: 0000000000000000 x16: 0000018000000000 x15: 52f8004000000000 x14: 0000e00000000000 x13: 0000000000002000 x12: 0000000000000020 x11: 52f8000000000000 x10: 52f8e1c0ffff6000 x9 : ffffbeb9619a681c x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff00010b02ddb0 x5 : ffffbeb96395e378 x4 : 0000000000000000 x3 : 0000000000000cc0 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x720 truncate_inode_partial_folio+0xdc/0x160 shmem_undo_range+0x2bc/0x6a8 shmem_fallocate+0x134/0x430 vfs_fallocate+0x124/0x2e8 ksys_fallocate+0x4c/0xa0 __arm64_sys_fallocate+0x24/0x38 invoke_syscall.constprop.0+0x7c/0xd8 do_el0_svc+0xb4/0xd0 el0_svc+0x44/0x1d8 el0t_64_sync_handler+0x134/0x150 el0t_64_sync+0x17c/0x180 Fix it by disabling PMD-sized page cache when HPAGE_PMD_ORDER is larger than MAX_PAGECACHE_ORDER. As Matthew Wilcox pointed, the page cache in a shmem file isn't represented by a multi-index entry and doesn't have this limitation when the xarry entry is split until commit 6b24ca4a1a8d ("mm: Use multi-index entries in the page cache").
- CVE-2024-42243:
In the Linux kernel, the following vulnerability has been resolved: mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray Patch series "mm/filemap: Limit page cache size to that supported by xarray", v2. Currently, xarray can't support arbitrary page cache size. More details can be found from the WARN_ON() statement in xas_split_alloc(). In our test whose code is attached below, we hit the WARN_ON() on ARM64 system where the base page size is 64KB and huge page size is 512MB. The issue was reported long time ago and some discussions on it can be found here [1]. [1] https://www.spinics.net/lists/linux-xfs/msg75404.html In order to fix the issue, we need to adjust MAX_PAGECACHE_ORDER to one supported by xarray and avoid PMD-sized page cache if needed. The code changes are suggested by David Hildenbrand. PATCH[1] adjusts MAX_PAGECACHE_ORDER to that supported by xarray PATCH[2-3] avoids PMD-sized page cache in the synchronous readahead path PATCH[4] avoids PMD-sized page cache for shmem files if needed Test program ============ # cat test.c #define _GNU_SOURCE #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <string.h> #include <fcntl.h> #include <errno.h> #include <sys/syscall.h> #include <sys/mman.h> #define TEST_XFS_FILENAME "/tmp/data" #define TEST_SHMEM_FILENAME "/dev/shm/data" #define TEST_MEM_SIZE 0x20000000 int main(int argc, char **argv) { const char *filename; int fd = 0; void *buf = (void *)-1, *p; int pgsize = getpagesize(); int ret; if (pgsize != 0x10000) { fprintf(stderr, "64KB base page size is required\n"); return -EPERM; } system("echo force > /sys/kernel/mm/transparent_hugepage/shmem_enabled"); system("rm -fr /tmp/data"); system("rm -fr /dev/shm/data"); system("echo 1 > /proc/sys/vm/drop_caches"); /* Open xfs or shmem file */ filename = TEST_XFS_FILENAME; if (argc > 1 && !strcmp(argv[1], "shmem")) filename = TEST_SHMEM_FILENAME; fd = open(filename, O_CREAT | O_RDWR | O_TRUNC); if (fd < 0) { fprintf(stderr, "Unable to open <%s>\n", filename); return -EIO; } /* Extend file size */ ret = ftruncate(fd, TEST_MEM_SIZE); if (ret) { fprintf(stderr, "Error %d to ftruncate()\n", ret); goto cleanup; } /* Create VMA */ buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if (buf == (void *)-1) { fprintf(stderr, "Unable to mmap <%s>\n", filename); goto cleanup; } fprintf(stdout, "mapped buffer at 0x%p\n", buf); ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE); if (ret) { fprintf(stderr, "Unable to madvise(MADV_HUGEPAGE)\n"); goto cleanup; } /* Populate VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_WRITE); if (ret) { fprintf(stderr, "Error %d to madvise(MADV_POPULATE_WRITE)\n", ret); goto cleanup; } /* Punch the file to enforce xarray split */ ret = fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, TEST_MEM_SIZE - pgsize, pgsize); if (ret) fprintf(stderr, "Error %d to fallocate()\n", ret); cleanup: if (buf != (void *)-1) munmap(buf, TEST_MEM_SIZE); if (fd > 0) close(fd); return 0; } # gcc test.c -o test # cat /proc/1/smaps | grep KernelPageSize | head -n 1 KernelPageSize: 64 kB # ./test shmem : ------------[ cut here ]------------ WARNING: CPU: 17 PID: 5253 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set nf_tables rfkill nfnetlink vfat fat virtio_balloon \ drm fuse xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 \ virtio_net sha1_ce net_failover failover virtio_console virtio_blk \ dimlib virtio_mmio CPU: 17 PID: 5253 Comm: test Kdump: loaded Tainted: G W 6.10.0-rc5-gavin+ #12 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TC ---truncated---
- CVE-2024-42279:
In the Linux kernel, the following vulnerability has been resolved: spi: microchip-core: ensure TX and RX FIFOs are empty at start of a transfer While transmitting with rx_len == 0, the RX FIFO is not going to be emptied in the interrupt handler. A subsequent transfer could then read crap from the previous transfer out of the RX FIFO into the start RX buffer. The core provides a register that will empty the RX and TX FIFOs, so do that before each transfer.
- CVE-2024-42317:
In the Linux kernel, the following vulnerability has been resolved: mm/huge_memory: avoid PMD-size page cache if needed xarray can't support arbitrary page cache size. the largest and supported page cache size is defined as MAX_PAGECACHE_ORDER by commit 099d90642a71 ("mm/filemap: make MAX_PAGECACHE_ORDER acceptable to xarray"). However, it's possible to have 512MB page cache in the huge memory's collapsing path on ARM64 system whose base page size is 64KB. 512MB page cache is breaking the limitation and a warning is raised when the xarray entry is split as shown in the following example. [root@dhcp-10-26-1-207 ~]# cat /proc/1/smaps | grep KernelPageSize KernelPageSize: 64 kB [root@dhcp-10-26-1-207 ~]# cat /tmp/test.c : int main(int argc, char **argv) { const char *filename = TEST_XFS_FILENAME; int fd = 0; void *buf = (void *)-1, *p; int pgsize = getpagesize(); int ret = 0; if (pgsize != 0x10000) { fprintf(stdout, "System with 64KB base page size is required!\n"); return -EPERM; } system("echo 0 > /sys/devices/virtual/bdi/253:0/read_ahead_kb"); system("echo 1 > /proc/sys/vm/drop_caches"); /* Open the xfs file */ fd = open(filename, O_RDONLY); assert(fd > 0); /* Create VMA */ buf = mmap(NULL, TEST_MEM_SIZE, PROT_READ, MAP_SHARED, fd, 0); assert(buf != (void *)-1); fprintf(stdout, "mapped buffer at 0x%p\n", buf); /* Populate VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_NOHUGEPAGE); assert(ret == 0); ret = madvise(buf, TEST_MEM_SIZE, MADV_POPULATE_READ); assert(ret == 0); /* Collapse VMA */ ret = madvise(buf, TEST_MEM_SIZE, MADV_HUGEPAGE); assert(ret == 0); ret = madvise(buf, TEST_MEM_SIZE, MADV_COLLAPSE); if (ret) { fprintf(stdout, "Error %d to madvise(MADV_COLLAPSE)\n", errno); goto out; } /* Split xarray entry. Write permission is needed */ munmap(buf, TEST_MEM_SIZE); buf = (void *)-1; close(fd); fd = open(filename, O_RDWR); assert(fd > 0); fallocate(fd, FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE, TEST_MEM_SIZE - pgsize, pgsize); out: if (buf != (void *)-1) munmap(buf, TEST_MEM_SIZE); if (fd > 0) close(fd); return ret; } [root@dhcp-10-26-1-207 ~]# gcc /tmp/test.c -o /tmp/test [root@dhcp-10-26-1-207 ~]# /tmp/test ------------[ cut here ]------------ WARNING: CPU: 25 PID: 7560 at lib/xarray.c:1025 xas_split_alloc+0xf8/0x128 Modules linked in: nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib \ nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct \ nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 \ ip_set rfkill nf_tables nfnetlink vfat fat virtio_balloon drm fuse \ xfs libcrc32c crct10dif_ce ghash_ce sha2_ce sha256_arm64 virtio_net \ sha1_ce net_failover virtio_blk virtio_console failover dimlib virtio_mmio CPU: 25 PID: 7560 Comm: test Kdump: loaded Not tainted 6.10.0-rc7-gavin+ #9 Hardware name: QEMU KVM Virtual Machine, BIOS edk2-20240524-1.el9 05/24/2024 pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : xas_split_alloc+0xf8/0x128 lr : split_huge_page_to_list_to_order+0x1c4/0x780 sp : ffff8000ac32f660 x29: ffff8000ac32f660 x28: ffff0000e0969eb0 x27: ffff8000ac32f6c0 x26: 0000000000000c40 x25: ffff0000e0969eb0 x24: 000000000000000d x23: ffff8000ac32f6c0 x22: ffffffdfc0700000 x21: 0000000000000000 x20: 0000000000000000 x19: ffffffdfc0700000 x18: 0000000000000000 x17: 0000000000000000 x16: ffffd5f3708ffc70 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000 x11: ffffffffffffffc0 x10: 0000000000000040 x9 : ffffd5f3708e692c x8 : 0000000000000003 x7 : 0000000000000000 x6 : ffff0000e0969eb8 x5 : ffffd5f37289e378 x4 : 0000000000000000 x3 : 0000000000000c40 x2 : 000000000000000d x1 : 000000000000000c x0 : 0000000000000000 Call trace: xas_split_alloc+0xf8/0x128 split_huge_page_to_list_to_order+0x1c4/0x780 truncate_inode_partial_folio+0xdc/0x160 truncate_inode_pages_range+0x1b4/0x4a8 truncate_pagecache_range+0x84/0xa ---truncated---
- CVE-2024-43819:
In the Linux kernel, the following vulnerability has been resolved: kvm: s390: Reject memory region operations for ucontrol VMs This change rejects the KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2 ioctls when called on a ucontrol VM. This is necessary since ucontrol VMs have kvm->arch.gmap set to 0 and would thus result in a null pointer dereference further in. Memory management needs to be performed in userspace and using the ioctls KVM_S390_UCAS_MAP and KVM_S390_UCAS_UNMAP. Also improve s390 specific documentation for KVM_SET_USER_MEMORY_REGION and KVM_SET_USER_MEMORY_REGION2. [frankja@linux.ibm.com: commit message spelling fix, subject prefix fix]
- CVE-2024-43824:
In the Linux kernel, the following vulnerability has been resolved: PCI: endpoint: pci-epf-test: Make use of cached 'epc_features' in pci_epf_test_core_init() Instead of getting the epc_features from pci_epc_get_features() API, use the cached pci_epf_test::epc_features value to avoid the NULL check. Since the NULL check is already performed in pci_epf_test_bind(), having one more check in pci_epf_test_core_init() is redundant and it is not possible to hit the NULL pointer dereference. Also with commit a01e7214bef9 ("PCI: endpoint: Remove "core_init_notifier" flag"), 'epc_features' got dereferenced without the NULL check, leading to the following false positive Smatch warning: drivers/pci/endpoint/functions/pci-epf-test.c:784 pci_epf_test_core_init() error: we previously assumed 'epc_features' could be null (see line 747) Thus, remove the redundant NULL check and also use the epc_features:: {msix_capable/msi_capable} flags directly to avoid local variables. [kwilczynski: commit log]
- CVE-2024-43831:
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Handle invalid decoder vsi Handle an invalid decoder vsi in vpu_dec_init to ensure the decoder vsi is valid for future use.
- CVE-2024-43840:
In the Linux kernel, the following vulnerability has been resolved: bpf, arm64: Fix trampoline for BPF_TRAMP_F_CALL_ORIG When BPF_TRAMP_F_CALL_ORIG is set, the trampoline calls __bpf_tramp_enter() and __bpf_tramp_exit() functions, passing them the struct bpf_tramp_image *im pointer as an argument in R0. The trampoline generation code uses emit_addr_mov_i64() to emit instructions for moving the bpf_tramp_image address into R0, but emit_addr_mov_i64() assumes the address to be in the vmalloc() space and uses only 48 bits. Because bpf_tramp_image is allocated using kzalloc(), its address can use more than 48-bits, in this case the trampoline will pass an invalid address to __bpf_tramp_enter/exit() causing a kernel crash. Fix this by using emit_a64_mov_i64() in place of emit_addr_mov_i64() as it can work with addresses that are greater than 48-bits.
- CVE-2024-43850:
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: icc-bwmon: Fix refcount imbalance seen during bwmon_remove The following warning is seen during bwmon_remove due to refcount imbalance, fix this by releasing the OPPs after use. Logs: WARNING: at drivers/opp/core.c:1640 _opp_table_kref_release+0x150/0x158 Hardware name: Qualcomm Technologies, Inc. X1E80100 CRD (DT) ... Call trace: _opp_table_kref_release+0x150/0x158 dev_pm_opp_remove_table+0x100/0x1b4 devm_pm_opp_of_table_release+0x10/0x1c devm_action_release+0x14/0x20 devres_release_all+0xa4/0x104 device_unbind_cleanup+0x18/0x60 device_release_driver_internal+0x1ec/0x228 driver_detach+0x50/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 platform_driver_unregister+0x14/0x20 bwmon_driver_exit+0x18/0x524 [icc_bwmon] __arm64_sys_delete_module+0x184/0x264 invoke_syscall+0x48/0x118 el0_svc_common.constprop.0+0xc8/0xe8 do_el0_svc+0x20/0x2c el0_svc+0x34/0xdc el0t_64_sync_handler+0x13c/0x158 el0t_64_sync+0x190/0x194 --[ end trace 0000000000000000 ]---
- CVE-2024-43872:
In the Linux kernel, the following vulnerability has been resolved: RDMA/hns: Fix soft lockup under heavy CEQE load CEQEs are handled in interrupt handler currently. This may cause the CPU core staying in interrupt context too long and lead to soft lockup under heavy load. Handle CEQEs in BH workqueue and set an upper limit for the number of CEQE handled by a single call of work handler.
- CVE-2024-43886:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check in resource_log_pipe_topology_update [WHY] When switching from "Extend" to "Second Display Only" we sometimes call resource_get_otg_master_for_stream on a stream for the eDP, which is disconnected. This leads to a null pointer dereference. [HOW] Added a null check in dc_resource.c/resource_log_pipe_topology_update.
- CVE-2024-43899:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix null pointer deref in dcn20_resource.c Fixes a hang thats triggered when MPV is run on a DCN401 dGPU: mpv --hwdec=vaapi --vo=gpu --hwdec-codecs=all and then enabling fullscreen playback (double click on the video) The following calltrace will be seen: [ 181.843989] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 181.843997] #PF: supervisor instruction fetch in kernel mode [ 181.844003] #PF: error_code(0x0010) - not-present page [ 181.844009] PGD 0 P4D 0 [ 181.844020] Oops: 0010 [#1] PREEMPT SMP NOPTI [ 181.844028] CPU: 6 PID: 1892 Comm: gnome-shell Tainted: G W OE 6.5.0-41-generic #41~22.04.2-Ubuntu [ 181.844038] Hardware name: System manufacturer System Product Name/CROSSHAIR VI HERO, BIOS 6302 10/23/2018 [ 181.844044] RIP: 0010:0x0 [ 181.844079] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [ 181.844084] RSP: 0018:ffffb593c2b8f7b0 EFLAGS: 00010246 [ 181.844093] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000004 [ 181.844099] RDX: ffffb593c2b8f804 RSI: ffffb593c2b8f7e0 RDI: ffff9e3c8e758400 [ 181.844105] RBP: ffffb593c2b8f7b8 R08: ffffb593c2b8f9c8 R09: ffffb593c2b8f96c [ 181.844110] R10: 0000000000000000 R11: 0000000000000000 R12: ffffb593c2b8f9c8 [ 181.844115] R13: 0000000000000001 R14: ffff9e3c88000000 R15: 0000000000000005 [ 181.844121] FS: 00007c6e323bb5c0(0000) GS:ffff9e3f85f80000(0000) knlGS:0000000000000000 [ 181.844128] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 181.844134] CR2: ffffffffffffffd6 CR3: 0000000140fbe000 CR4: 00000000003506e0 [ 181.844141] Call Trace: [ 181.844146] <TASK> [ 181.844153] ? show_regs+0x6d/0x80 [ 181.844167] ? __die+0x24/0x80 [ 181.844179] ? page_fault_oops+0x99/0x1b0 [ 181.844192] ? do_user_addr_fault+0x31d/0x6b0 [ 181.844204] ? exc_page_fault+0x83/0x1b0 [ 181.844216] ? asm_exc_page_fault+0x27/0x30 [ 181.844237] dcn20_get_dcc_compression_cap+0x23/0x30 [amdgpu] [ 181.845115] amdgpu_dm_plane_validate_dcc.constprop.0+0xe5/0x180 [amdgpu] [ 181.845985] amdgpu_dm_plane_fill_plane_buffer_attributes+0x300/0x580 [amdgpu] [ 181.846848] fill_dc_plane_info_and_addr+0x258/0x350 [amdgpu] [ 181.847734] fill_dc_plane_attributes+0x162/0x350 [amdgpu] [ 181.848748] dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.849791] ? dm_update_plane_state.constprop.0+0x4e3/0x6b0 [amdgpu] [ 181.850840] amdgpu_dm_atomic_check+0xdfe/0x1760 [amdgpu]
- CVE-2024-43901:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix NULL pointer dereference for DTN log in DCN401 When users run the command: cat /sys/kernel/debug/dri/0/amdgpu_dm_dtn_log The following NULL pointer dereference happens: [ +0.000003] BUG: kernel NULL pointer dereference, address: NULL [ +0.000005] #PF: supervisor instruction fetch in kernel mode [ +0.000002] #PF: error_code(0x0010) - not-present page [ +0.000002] PGD 0 P4D 0 [ +0.000004] Oops: 0010 [#1] PREEMPT SMP NOPTI [ +0.000003] RIP: 0010:0x0 [ +0.000008] Code: Unable to access opcode bytes at 0xffffffffffffffd6. [...] [ +0.000002] PKRU: 55555554 [ +0.000002] Call Trace: [ +0.000002] <TASK> [ +0.000003] ? show_regs+0x65/0x70 [ +0.000006] ? __die+0x24/0x70 [ +0.000004] ? page_fault_oops+0x160/0x470 [ +0.000006] ? do_user_addr_fault+0x2b5/0x690 [ +0.000003] ? prb_read_valid+0x1c/0x30 [ +0.000005] ? exc_page_fault+0x8c/0x1a0 [ +0.000005] ? asm_exc_page_fault+0x27/0x30 [ +0.000012] dcn10_log_color_state+0xf9/0x510 [amdgpu] [ +0.000306] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? vsnprintf+0x2fb/0x600 [ +0.000009] dcn10_log_hw_state+0xfd0/0xfe0 [amdgpu] [ +0.000218] ? __mod_memcg_lruvec_state+0xe8/0x170 [ +0.000008] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? debug_smp_processor_id+0x17/0x20 [ +0.000003] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? set_ptes.isra.0+0x2b/0x90 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? _raw_spin_unlock+0x19/0x40 [ +0.000004] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000002] ? do_anonymous_page+0x337/0x700 [ +0.000004] dtn_log_read+0x82/0x120 [amdgpu] [ +0.000207] full_proxy_read+0x66/0x90 [ +0.000007] vfs_read+0xb0/0x340 [ +0.000005] ? __count_memcg_events+0x79/0xe0 [ +0.000002] ? srso_alias_return_thunk+0x5/0xfbef5 [ +0.000003] ? count_memcg_events.constprop.0+0x1e/0x40 [ +0.000003] ? handle_mm_fault+0xb2/0x370 [ +0.000003] ksys_read+0x6b/0xf0 [ +0.000004] __x64_sys_read+0x19/0x20 [ +0.000003] do_syscall_64+0x60/0x130 [ +0.000004] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ +0.000003] RIP: 0033:0x7fdf32f147e2 [...] This error happens when the color log tries to read the gamut remap information from DCN401 which is not initialized in the dcn401_dpp_funcs which leads to a null pointer dereference. This commit addresses this issue by adding a proper guard to access the gamut_remap callback in case the specific ASIC did not implement this function.
- CVE-2024-43913:
In the Linux kernel, the following vulnerability has been resolved: nvme: apple: fix device reference counting Drivers must call nvme_uninit_ctrl after a successful nvme_init_ctrl. Split the allocation side out to make the error handling boundary easier to navigate. The apple driver had been doing this wrong, leaking the controller device memory on a tagset failure.
- CVE-2024-44941:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to cover read extent cache access with lock syzbot reports a f2fs bug as below: BUG: KASAN: slab-use-after-free in sanity_check_extent_cache+0x370/0x410 fs/f2fs/extent_cache.c:46 Read of size 4 at addr ffff8880739ab220 by task syz-executor200/5097 CPU: 0 PID: 5097 Comm: syz-executor200 Not tainted 6.9.0-rc6-syzkaller #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 sanity_check_extent_cache+0x370/0x410 fs/f2fs/extent_cache.c:46 do_read_inode fs/f2fs/inode.c:509 [inline] f2fs_iget+0x33e1/0x46e0 fs/f2fs/inode.c:560 f2fs_nfs_get_inode+0x74/0x100 fs/f2fs/super.c:3237 generic_fh_to_dentry+0x9f/0xf0 fs/libfs.c:1413 exportfs_decode_fh_raw+0x152/0x5f0 fs/exportfs/expfs.c:444 exportfs_decode_fh+0x3c/0x80 fs/exportfs/expfs.c:584 do_handle_to_path fs/fhandle.c:155 [inline] handle_to_path fs/fhandle.c:210 [inline] do_handle_open+0x495/0x650 fs/fhandle.c:226 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf5/0x240 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f We missed to cover sanity_check_extent_cache() w/ extent cache lock, so, below race case may happen, result in use after free issue. - f2fs_iget - do_read_inode - f2fs_init_read_extent_tree : add largest extent entry in to cache - shrink - f2fs_shrink_read_extent_tree - __shrink_extent_tree - __detach_extent_node : drop largest extent entry - sanity_check_extent_cache : access et->largest w/o lock let's refactor sanity_check_extent_cache() to avoid extent cache access and call it before f2fs_init_read_extent_tree() to fix this issue.
- CVE-2024-44942:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on F2FS_INLINE_DATA flag in inode during GC syzbot reports a f2fs bug as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/inline.c:258! CPU: 1 PID: 34 Comm: kworker/u8:2 Not tainted 6.9.0-rc6-syzkaller-00012-g9e4bc4bcae01 #0 RIP: 0010:f2fs_write_inline_data+0x781/0x790 fs/f2fs/inline.c:258 Call Trace: f2fs_write_single_data_page+0xb65/0x1d60 fs/f2fs/data.c:2834 f2fs_write_cache_pages fs/f2fs/data.c:3133 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3288 [inline] f2fs_write_data_pages+0x1efe/0x3a90 fs/f2fs/data.c:3315 do_writepages+0x35b/0x870 mm/page-writeback.c:2612 __writeback_single_inode+0x165/0x10b0 fs/fs-writeback.c:1650 writeback_sb_inodes+0x905/0x1260 fs/fs-writeback.c:1941 wb_writeback+0x457/0xce0 fs/fs-writeback.c:2117 wb_do_writeback fs/fs-writeback.c:2264 [inline] wb_workfn+0x410/0x1090 fs/fs-writeback.c:2304 process_one_work kernel/workqueue.c:3254 [inline] process_scheduled_works+0xa12/0x17c0 kernel/workqueue.c:3335 worker_thread+0x86d/0xd70 kernel/workqueue.c:3416 kthread+0x2f2/0x390 kernel/kthread.c:388 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 The root cause is: inline_data inode can be fuzzed, so that there may be valid blkaddr in its direct node, once f2fs triggers background GC to migrate the block, it will hit f2fs_bug_on() during dirty page writeback. Let's add sanity check on F2FS_INLINE_DATA flag in inode during GC, so that, it can forbid migrating inline_data inode's data block for fixing.
- CVE-2024-44951:
In the Linux kernel, the following vulnerability has been resolved: serial: sc16is7xx: fix TX fifo corruption Sometimes, when a packet is received on channel A at almost the same time as a packet is about to be transmitted on channel B, we observe with a logic analyzer that the received packet on channel A is transmitted on channel B. In other words, the Tx buffer data on channel B is corrupted with data from channel A. The problem appeared since commit 4409df5866b7 ("serial: sc16is7xx: change EFR lock to operate on each channels"), which changed the EFR locking to operate on each channel instead of chip-wise. This commit has introduced a regression, because the EFR lock is used not only to protect the EFR registers access, but also, in a very obscure and undocumented way, to protect access to the data buffer, which is shared by the Tx and Rx handlers, but also by each channel of the IC. Fix this regression first by switching to kfifo_out_linear_ptr() in sc16is7xx_handle_tx() to eliminate the need for a shared Rx/Tx buffer. Secondly, replace the chip-wise Rx buffer with a separate Rx buffer for each channel.
- CVE-2024-44955:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Don't refer to dc_sink in is_dsc_need_re_compute [Why] When unplug one of monitors connected after mst hub, encounter null pointer dereference. It's due to dc_sink get released immediately in early_unregister() or detect_ctx(). When commit new state which directly referring to info stored in dc_sink will cause null pointer dereference. [how] Remove redundant checking condition. Relevant condition should already be covered by checking if dsc_aux is null or not. Also reset dsc_aux to NULL when the connector is disconnected.
- CVE-2024-44957:
In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Switch from mutex to spinlock for irqfds irqfd_wakeup() gets EPOLLHUP, when it is called by eventfd_release() by way of wake_up_poll(&ctx->wqh, EPOLLHUP), which gets called under spin_lock_irqsave(). We can't use a mutex here as it will lead to a deadlock. Fix it by switching over to a spin lock.
- CVE-2024-44961:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Forward soft recovery errors to userspace As we discussed before[1], soft recovery should be forwarded to userspace, or we can get into a really bad state where apps will keep submitting hanging command buffers cascading us to a hard reset. 1: https://lore.kernel.org/all/bf23d5ed-9a6b-43e7-84ee-8cbfd0d60f18@froggi.es/ (cherry picked from commit 434967aadbbbe3ad9103cc29e9a327de20fdba01)
- CVE-2024-44963:
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not BUG_ON() when freeing tree block after error When freeing a tree block, at btrfs_free_tree_block(), if we fail to create a delayed reference we don't deal with the error and just do a BUG_ON(). The error most likely to happen is -ENOMEM, and we have a comment mentioning that only -ENOMEM can happen, but that is not true, because in case qgroups are enabled any error returned from btrfs_qgroup_trace_extent_post() (can be -EUCLEAN or anything returned from btrfs_search_slot() for example) can be propagated back to btrfs_free_tree_block(). So stop doing a BUG_ON() and return the error to the callers and make them abort the transaction to prevent leaking space. Syzbot was triggering this, likely due to memory allocation failure injection.
- CVE-2024-44972:
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not clear page dirty inside extent_write_locked_range() [BUG] For subpage + zoned case, the following workload can lead to rsv data leak at unmount time: # mkfs.btrfs -f -s 4k $dev # mount $dev $mnt # fsstress -w -n 8 -d $mnt -s 1709539240 0/0: fiemap - no filename 0/1: copyrange read - no filename 0/2: write - no filename 0/3: rename - no source filename 0/4: creat f0 x:0 0 0 0/4: creat add id=0,parent=-1 0/5: writev f0[259 1 0 0 0 0] [778052,113,965] 0 0/6: ioctl(FIEMAP) f0[259 1 0 0 224 887097] [1294220,2291618343991484791,0x10000] -1 0/7: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 224 887097] return 25, fallback to stat() 0/7: dwrite f0[259 1 0 0 224 887097] [696320,102400] 0 # umount $mnt The dmesg includes the following rsv leak detection warning (all call trace skipped): ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8653 btrfs_destroy_inode+0x1e0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8654 btrfs_destroy_inode+0x1a8/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- ------------[ cut here ]------------ WARNING: CPU: 2 PID: 4528 at fs/btrfs/inode.c:8660 btrfs_destroy_inode+0x1a0/0x200 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): last unmount of filesystem 1b4abba9-de34-4f07-9e7f-157cf12a18d6 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info DATA has 268218368 free, is not full BTRFS info (device sda): space_info total=268435456, used=204800, pinned=0, reserved=0, may_use=12288, readonly=0 zone_unusable=0 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 4528 at fs/btrfs/block-group.c:4434 btrfs_free_block_groups+0x338/0x500 [btrfs] ---[ end trace 0000000000000000 ]--- BTRFS info (device sda): space_info METADATA has 267796480 free, is not full BTRFS info (device sda): space_info total=268435456, used=131072, pinned=0, reserved=0, may_use=262144, readonly=0 zone_unusable=245760 BTRFS info (device sda): global_block_rsv: size 0 reserved 0 BTRFS info (device sda): trans_block_rsv: size 0 reserved 0 BTRFS info (device sda): chunk_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_block_rsv: size 0 reserved 0 BTRFS info (device sda): delayed_refs_rsv: size 0 reserved 0 Above $dev is a tcmu-runner emulated zoned HDD, which has a max zone append size of 64K, and the system has 64K page size. [CAUSE] I have added several trace_printk() to show the events (header skipped): > btrfs_dirty_pages: r/i=5/259 dirty start=774144 len=114688 > btrfs_dirty_pages: r/i=5/259 dirty part of page=720896 off_in_page=53248 len_in_page=12288 > btrfs_dirty_pages: r/i=5/259 dirty part of page=786432 off_in_page=0 len_in_page=65536 > btrfs_dirty_pages: r/i=5/259 dirty part of page=851968 off_in_page=0 len_in_page=36864 The above lines show our buffered write has dirtied 3 pages of inode 259 of root 5: 704K 768K 832K 896K I |////I/////////////////I///////////| I 756K 868K |///| is the dirtied range using subpage bitmaps. and 'I' is the page boundary. Meanwhile all three pages (704K, 768K, 832K) have their PageDirty flag set. > btrfs_direct_write: r/i=5/259 start dio filepos=696320 len=102400 Then direct IO writ ---truncated---
- CVE-2024-45001:
In the Linux kernel, the following vulnerability has been resolved: net: mana: Fix RX buf alloc_size alignment and atomic op panic The MANA driver's RX buffer alloc_size is passed into napi_build_skb() to create SKB. skb_shinfo(skb) is located at the end of skb, and its alignment is affected by the alloc_size passed into napi_build_skb(). The size needs to be aligned properly for better performance and atomic operations. Otherwise, on ARM64 CPU, for certain MTU settings like 4000, atomic operations may panic on the skb_shinfo(skb)->dataref due to alignment fault. To fix this bug, add proper alignment to the alloc_size calculation. Sample panic info: [ 253.298819] Unable to handle kernel paging request at virtual address ffff000129ba5cce [ 253.300900] Mem abort info: [ 253.301760] ESR = 0x0000000096000021 [ 253.302825] EC = 0x25: DABT (current EL), IL = 32 bits [ 253.304268] SET = 0, FnV = 0 [ 253.305172] EA = 0, S1PTW = 0 [ 253.306103] FSC = 0x21: alignment fault Call trace: __skb_clone+0xfc/0x198 skb_clone+0x78/0xe0 raw6_local_deliver+0xfc/0x228 ip6_protocol_deliver_rcu+0x80/0x500 ip6_input_finish+0x48/0x80 ip6_input+0x48/0xc0 ip6_sublist_rcv_finish+0x50/0x78 ip6_sublist_rcv+0x1cc/0x2b8 ipv6_list_rcv+0x100/0x150 __netif_receive_skb_list_core+0x180/0x220 netif_receive_skb_list_internal+0x198/0x2a8 __napi_poll+0x138/0x250 net_rx_action+0x148/0x330 handle_softirqs+0x12c/0x3a0
- CVE-2024-45015:
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: move dpu_encoder's connector assignment to atomic_enable() For cases where the crtc's connectors_changed was set without enable/active getting toggled , there is an atomic_enable() call followed by an atomic_disable() but without an atomic_mode_set(). This results in a NULL ptr access for the dpu_encoder_get_drm_fmt() call in the atomic_enable() as the dpu_encoder's connector was cleared in the atomic_disable() but not re-assigned as there was no atomic_mode_set() call. Fix the NULL ptr access by moving the assignment for atomic_enable() and also use drm_atomic_get_new_connector_for_encoder() to get the connector from the atomic_state. Patchwork: https://patchwork.freedesktop.org/patch/606729/
- CVE-2024-46678:
In the Linux kernel, the following vulnerability has been resolved: bonding: change ipsec_lock from spin lock to mutex In the cited commit, bond->ipsec_lock is added to protect ipsec_list, hence xdo_dev_state_add and xdo_dev_state_delete are called inside this lock. As ipsec_lock is a spin lock and such xfrmdev ops may sleep, "scheduling while atomic" will be triggered when changing bond's active slave. [ 101.055189] BUG: scheduling while atomic: bash/902/0x00000200 [ 101.055726] Modules linked in: [ 101.058211] CPU: 3 PID: 902 Comm: bash Not tainted 6.9.0-rc4+ #1 [ 101.058760] Hardware name: [ 101.059434] Call Trace: [ 101.059436] <TASK> [ 101.060873] dump_stack_lvl+0x51/0x60 [ 101.061275] __schedule_bug+0x4e/0x60 [ 101.061682] __schedule+0x612/0x7c0 [ 101.062078] ? __mod_timer+0x25c/0x370 [ 101.062486] schedule+0x25/0xd0 [ 101.062845] schedule_timeout+0x77/0xf0 [ 101.063265] ? asm_common_interrupt+0x22/0x40 [ 101.063724] ? __bpf_trace_itimer_state+0x10/0x10 [ 101.064215] __wait_for_common+0x87/0x190 [ 101.064648] ? usleep_range_state+0x90/0x90 [ 101.065091] cmd_exec+0x437/0xb20 [mlx5_core] [ 101.065569] mlx5_cmd_do+0x1e/0x40 [mlx5_core] [ 101.066051] mlx5_cmd_exec+0x18/0x30 [mlx5_core] [ 101.066552] mlx5_crypto_create_dek_key+0xea/0x120 [mlx5_core] [ 101.067163] ? bonding_sysfs_store_option+0x4d/0x80 [bonding] [ 101.067738] ? kmalloc_trace+0x4d/0x350 [ 101.068156] mlx5_ipsec_create_sa_ctx+0x33/0x100 [mlx5_core] [ 101.068747] mlx5e_xfrm_add_state+0x47b/0xaa0 [mlx5_core] [ 101.069312] bond_change_active_slave+0x392/0x900 [bonding] [ 101.069868] bond_option_active_slave_set+0x1c2/0x240 [bonding] [ 101.070454] __bond_opt_set+0xa6/0x430 [bonding] [ 101.070935] __bond_opt_set_notify+0x2f/0x90 [bonding] [ 101.071453] bond_opt_tryset_rtnl+0x72/0xb0 [bonding] [ 101.071965] bonding_sysfs_store_option+0x4d/0x80 [bonding] [ 101.072567] kernfs_fop_write_iter+0x10c/0x1a0 [ 101.073033] vfs_write+0x2d8/0x400 [ 101.073416] ? alloc_fd+0x48/0x180 [ 101.073798] ksys_write+0x5f/0xe0 [ 101.074175] do_syscall_64+0x52/0x110 [ 101.074576] entry_SYSCALL_64_after_hwframe+0x4b/0x53 As bond_ipsec_add_sa_all and bond_ipsec_del_sa_all are only called from bond_change_active_slave, which requires holding the RTNL lock. And bond_ipsec_add_sa and bond_ipsec_del_sa are xfrm state xdo_dev_state_add and xdo_dev_state_delete APIs, which are in user context. So ipsec_lock doesn't have to be spin lock, change it to mutex, and thus the above issue can be resolved.
- CVE-2024-46681:
In the Linux kernel, the following vulnerability has been resolved: pktgen: use cpus_read_lock() in pg_net_init() I have seen the WARN_ON(smp_processor_id() != cpu) firing in pktgen_thread_worker() during tests. We must use cpus_read_lock()/cpus_read_unlock() around the for_each_online_cpu(cpu) loop. While we are at it use WARN_ON_ONCE() to avoid a possible syslog flood.
- CVE-2024-46698:
In the Linux kernel, the following vulnerability has been resolved: video/aperture: optionally match the device in sysfb_disable() In aperture_remove_conflicting_pci_devices(), we currently only call sysfb_disable() on vga class devices. This leads to the following problem when the pimary device is not VGA compatible: 1. A PCI device with a non-VGA class is the boot display 2. That device is probed first and it is not a VGA device so sysfb_disable() is not called, but the device resources are freed by aperture_detach_platform_device() 3. Non-primary GPU has a VGA class and it ends up calling sysfb_disable() 4. NULL pointer dereference via sysfb_disable() since the resources have already been freed by aperture_detach_platform_device() when it was called by the other device. Fix this by passing a device pointer to sysfb_disable() and checking the device to determine if we should execute it or not. v2: Fix build when CONFIG_SCREEN_INFO is not set v3: Move device check into the mutex Drop primary variable in aperture_remove_conflicting_pci_devices() Drop __init on pci sysfb_pci_dev_is_enabled()
- CVE-2024-46727:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add otg_master NULL check within resource_log_pipe_topology_update [Why] Coverity reports NULL_RETURN warning. [How] Add otg_master NULL check.
- CVE-2024-46728:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check index for aux_rd_interval before using aux_rd_interval has size of 7 and should be checked. This fixes 3 OVERRUN and 1 INTEGER_OVERFLOW issues reported by Coverity.
- CVE-2024-46729:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix incorrect size calculation for loop [WHY] fe_clk_en has size of 5 but sizeof(fe_clk_en) has byte size 20 which is lager than the array size. [HOW] Divide byte size 20 by its element size. This fixes 2 OVERRUN issues reported by Coverity.
- CVE-2024-46730:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Ensure array index tg_inst won't be -1 [WHY & HOW] tg_inst will be a negative if timing_generator_count equals 0, which should be checked before used. This fixes 2 OVERRUN issues reported by Coverity.
- CVE-2024-46733:
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix qgroup reserve leaks in cow_file_range In the buffered write path, the dirty page owns the qgroup reserve until it creates an ordered_extent. Therefore, any errors that occur before the ordered_extent is created must free that reservation, or else the space is leaked. The fstest generic/475 exercises various IO error paths, and is able to trigger errors in cow_file_range where we fail to get to allocating the ordered extent. Note that because we *do* clear delalloc, we are likely to remove the inode from the delalloc list, so the inodes/pages to not have invalidate/launder called on them in the commit abort path. This results in failures at the unmount stage of the test that look like: BTRFS: error (device dm-8 state EA) in cleanup_transaction:2018: errno=-5 IO failure BTRFS: error (device dm-8 state EA) in btrfs_replace_file_extents:2416: errno=-5 IO failure BTRFS warning (device dm-8 state EA): qgroup 0/5 has unreleased space, type 0 rsv 28672 ------------[ cut here ]------------ WARNING: CPU: 3 PID: 22588 at fs/btrfs/disk-io.c:4333 close_ctree+0x222/0x4d0 [btrfs] Modules linked in: btrfs blake2b_generic libcrc32c xor zstd_compress raid6_pq CPU: 3 PID: 22588 Comm: umount Kdump: loaded Tainted: G W 6.10.0-rc7-gab56fde445b8 #21 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014 RIP: 0010:close_ctree+0x222/0x4d0 [btrfs] RSP: 0018:ffffb4465283be00 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffffa1a1818e1000 RCX: 0000000000000001 RDX: 0000000000000000 RSI: ffffb4465283bbe0 RDI: ffffa1a19374fcb8 RBP: ffffa1a1818e13c0 R08: 0000000100028b16 R09: 0000000000000000 R10: 0000000000000003 R11: 0000000000000003 R12: ffffa1a18ad7972c R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000 FS: 00007f9168312b80(0000) GS:ffffa1a4afcc0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f91683c9140 CR3: 000000010acaa000 CR4: 00000000000006f0 Call Trace: <TASK> ? close_ctree+0x222/0x4d0 [btrfs] ? __warn.cold+0x8e/0xea ? close_ctree+0x222/0x4d0 [btrfs] ? report_bug+0xff/0x140 ? handle_bug+0x3b/0x70 ? exc_invalid_op+0x17/0x70 ? asm_exc_invalid_op+0x1a/0x20 ? close_ctree+0x222/0x4d0 [btrfs] generic_shutdown_super+0x70/0x160 kill_anon_super+0x11/0x40 btrfs_kill_super+0x11/0x20 [btrfs] deactivate_locked_super+0x2e/0xa0 cleanup_mnt+0xb5/0x150 task_work_run+0x57/0x80 syscall_exit_to_user_mode+0x121/0x130 do_syscall_64+0xab/0x1a0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f916847a887 ---[ end trace 0000000000000000 ]--- BTRFS error (device dm-8 state EA): qgroup reserved space leaked Cases 2 and 3 in the out_reserve path both pertain to this type of leak and must free the reserved qgroup data. Because it is already an error path, I opted not to handle the possible errors in btrfs_free_qgroup_data.
- CVE-2024-46742:
In the Linux kernel, the following vulnerability has been resolved: smb/server: fix potential null-ptr-deref of lease_ctx_info in smb2_open() null-ptr-deref will occur when (req_op_level == SMB2_OPLOCK_LEVEL_LEASE) and parse_lease_state() return NULL. Fix this by check if 'lease_ctx_info' is NULL. Additionally, remove the redundant parentheses in parse_durable_handle_context().
- CVE-2024-46748:
In the Linux kernel, the following vulnerability has been resolved: cachefiles: Set the max subreq size for cache writes to MAX_RW_COUNT Set the maximum size of a subrequest that writes to cachefiles to be MAX_RW_COUNT so that we don't overrun the maximum write we can make to the backing filesystem.
- CVE-2024-46751:
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't BUG_ON() when 0 reference count at btrfs_lookup_extent_info() Instead of doing a BUG_ON() handle the error by returning -EUCLEAN, aborting the transaction and logging an error message.
- CVE-2024-46753:
In the Linux kernel, the following vulnerability has been resolved: btrfs: handle errors from btrfs_dec_ref() properly In walk_up_proc() we BUG_ON(ret) from btrfs_dec_ref(). This is incorrect, we have proper error handling here, return the error.
- CVE-2024-46754:
In the Linux kernel, the following vulnerability has been resolved: bpf: Remove tst_run from lwt_seg6local_prog_ops. The syzbot reported that the lwt_seg6 related BPF ops can be invoked via bpf_test_run() without without entering input_action_end_bpf() first. Martin KaFai Lau said that self test for BPF_PROG_TYPE_LWT_SEG6LOCAL probably didn't work since it was introduced in commit 04d4b274e2a ("ipv6: sr: Add seg6local action End.BPF"). The reason is that the per-CPU variable seg6_bpf_srh_states::srh is never assigned in the self test case but each BPF function expects it. Remove test_run for BPF_PROG_TYPE_LWT_SEG6LOCAL.
- CVE-2024-46760:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: usb: schedule rx work after everything is set up Right now it's possible to hit NULL pointer dereference in rtw_rx_fill_rx_status on hw object and/or its fields because initialization routine can start getting USB replies before rtw_dev is fully setup. The stack trace looks like this: rtw_rx_fill_rx_status rtw8821c_query_rx_desc rtw_usb_rx_handler ... queue_work rtw_usb_read_port_complete ... usb_submit_urb rtw_usb_rx_resubmit rtw_usb_init_rx rtw_usb_probe So while we do the async stuff rtw_usb_probe continues and calls rtw_register_hw, which does all kinds of initialization (e.g. via ieee80211_register_hw) that rtw_rx_fill_rx_status relies on. Fix this by moving the first usb_submit_urb after everything is set up. For me, this bug manifested as: [ 8.893177] rtw_8821cu 1-1:1.2: band wrong, packet dropped [ 8.910904] rtw_8821cu 1-1:1.2: hw->conf.chandef.chan NULL in rtw_rx_fill_rx_status because I'm using Larry's backport of rtw88 driver with the NULL checks in rtw_rx_fill_rx_status.
- CVE-2024-46762:
In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds.
- CVE-2024-46765:
In the Linux kernel, the following vulnerability has been resolved: ice: protect XDP configuration with a mutex The main threat to data consistency in ice_xdp() is a possible asynchronous PF reset. It can be triggered by a user or by TX timeout handler. XDP setup and PF reset code access the same resources in the following sections: * ice_vsi_close() in ice_prepare_for_reset() - already rtnl-locked * ice_vsi_rebuild() for the PF VSI - not protected * ice_vsi_open() - already rtnl-locked With an unfortunate timing, such accesses can result in a crash such as the one below: [ +1.999878] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 14 [ +2.002992] ice 0000:b1:00.0: Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring 18 [Mar15 18:17] ice 0000:b1:00.0 ens801f0np0: NETDEV WATCHDOG: CPU: 38: transmit queue 14 timed out 80692736 ms [ +0.000093] ice 0000:b1:00.0 ens801f0np0: tx_timeout: VSI_num: 6, Q 14, NTC: 0x0, HW_HEAD: 0x0, NTU: 0x0, INT: 0x4000001 [ +0.000012] ice 0000:b1:00.0 ens801f0np0: tx_timeout recovery level 1, txqueue 14 [ +0.394718] ice 0000:b1:00.0: PTP reset successful [ +0.006184] BUG: kernel NULL pointer dereference, address: 0000000000000098 [ +0.000045] #PF: supervisor read access in kernel mode [ +0.000023] #PF: error_code(0x0000) - not-present page [ +0.000023] PGD 0 P4D 0 [ +0.000018] Oops: 0000 [#1] PREEMPT SMP NOPTI [ +0.000023] CPU: 38 PID: 7540 Comm: kworker/38:1 Not tainted 6.8.0-rc7 #1 [ +0.000031] Hardware name: Intel Corporation S2600WFT/S2600WFT, BIOS SE5C620.86B.02.01.0014.082620210524 08/26/2021 [ +0.000036] Workqueue: ice ice_service_task [ice] [ +0.000183] RIP: 0010:ice_clean_tx_ring+0xa/0xd0 [ice] [...] [ +0.000013] Call Trace: [ +0.000016] <TASK> [ +0.000014] ? __die+0x1f/0x70 [ +0.000029] ? page_fault_oops+0x171/0x4f0 [ +0.000029] ? schedule+0x3b/0xd0 [ +0.000027] ? exc_page_fault+0x7b/0x180 [ +0.000022] ? asm_exc_page_fault+0x22/0x30 [ +0.000031] ? ice_clean_tx_ring+0xa/0xd0 [ice] [ +0.000194] ice_free_tx_ring+0xe/0x60 [ice] [ +0.000186] ice_destroy_xdp_rings+0x157/0x310 [ice] [ +0.000151] ice_vsi_decfg+0x53/0xe0 [ice] [ +0.000180] ice_vsi_rebuild+0x239/0x540 [ice] [ +0.000186] ice_vsi_rebuild_by_type+0x76/0x180 [ice] [ +0.000145] ice_rebuild+0x18c/0x840 [ice] [ +0.000145] ? delay_tsc+0x4a/0xc0 [ +0.000022] ? delay_tsc+0x92/0xc0 [ +0.000020] ice_do_reset+0x140/0x180 [ice] [ +0.000886] ice_service_task+0x404/0x1030 [ice] [ +0.000824] process_one_work+0x171/0x340 [ +0.000685] worker_thread+0x277/0x3a0 [ +0.000675] ? preempt_count_add+0x6a/0xa0 [ +0.000677] ? _raw_spin_lock_irqsave+0x23/0x50 [ +0.000679] ? __pfx_worker_thread+0x10/0x10 [ +0.000653] kthread+0xf0/0x120 [ +0.000635] ? __pfx_kthread+0x10/0x10 [ +0.000616] ret_from_fork+0x2d/0x50 [ +0.000612] ? __pfx_kthread+0x10/0x10 [ +0.000604] ret_from_fork_asm+0x1b/0x30 [ +0.000604] </TASK> The previous way of handling this through returning -EBUSY is not viable, particularly when destroying AF_XDP socket, because the kernel proceeds with removal anyway. There is plenty of code between those calls and there is no need to create a large critical section that covers all of them, same as there is no need to protect ice_vsi_rebuild() with rtnl_lock(). Add xdp_state_lock mutex to protect ice_vsi_rebuild() and ice_xdp(). Leaving unprotected sections in between would result in two states that have to be considered: 1. when the VSI is closed, but not yet rebuild 2. when VSI is already rebuild, but not yet open The latter case is actually already handled through !netif_running() case, we just need to adjust flag checking a little. The former one is not as trivial, because between ice_vsi_close() and ice_vsi_rebuild(), a lot of hardware interaction happens, this can make adding/deleting rings exit with an error. Luckily, VSI rebuild is pending and can apply new configuration for us in a managed fashion. Therefore, add an additional VSI state flag ICE_VSI_REBUILD_PENDING to indicate that ice_x ---truncated---
- CVE-2024-46772:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check denominator crb_pipes before used [WHAT & HOW] A denominator cannot be 0, and is checked before used. This fixes 2 DIVIDE_BY_ZERO issues reported by Coverity.
- CVE-2024-46774:
In the Linux kernel, the following vulnerability has been resolved: powerpc/rtas: Prevent Spectre v1 gadget construction in sys_rtas() Smatch warns: arch/powerpc/kernel/rtas.c:1932 __do_sys_rtas() warn: potential spectre issue 'args.args' [r] (local cap) The 'nargs' and 'nret' locals come directly from a user-supplied buffer and are used as indexes into a small stack-based array and as inputs to copy_to_user() after they are subject to bounds checks. Use array_index_nospec() after the bounds checks to clamp these values for speculative execution.
- CVE-2024-46775:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Validate function returns [WHAT & HOW] Function return values must be checked before data can be used in subsequent functions. This fixes 4 CHECKED_RETURN issues reported by Coverity.
- CVE-2024-46776:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Run DC_LOG_DC after checking link->link_enc [WHAT] The DC_LOG_DC should be run after link->link_enc is checked, not before. This fixes 1 REVERSE_INULL issue reported by Coverity.
- CVE-2024-46786:
In the Linux kernel, the following vulnerability has been resolved: fscache: delete fscache_cookie_lru_timer when fscache exits to avoid UAF The fscache_cookie_lru_timer is initialized when the fscache module is inserted, but is not deleted when the fscache module is removed. If timer_reduce() is called before removing the fscache module, the fscache_cookie_lru_timer will be added to the timer list of the current cpu. Afterwards, a use-after-free will be triggered in the softIRQ after removing the fscache module, as follows: ================================================================== BUG: unable to handle page fault for address: fffffbfff803c9e9 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 21ffea067 P4D 21ffea067 PUD 21ffe6067 PMD 110a7c067 PTE 0 Oops: Oops: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Tainted: G W 6.11.0-rc3 #855 Tainted: [W]=WARN RIP: 0010:__run_timer_base.part.0+0x254/0x8a0 Call Trace: <IRQ> tmigr_handle_remote_up+0x627/0x810 __walk_groups.isra.0+0x47/0x140 tmigr_handle_remote+0x1fa/0x2f0 handle_softirqs+0x180/0x590 irq_exit_rcu+0x84/0xb0 sysvec_apic_timer_interrupt+0x6e/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 default_idle_call+0x38/0x60 do_idle+0x2b5/0x300 cpu_startup_entry+0x54/0x60 start_secondary+0x20d/0x280 common_startup_64+0x13e/0x148 </TASK> Modules linked in: [last unloaded: netfs] ================================================================== Therefore delete fscache_cookie_lru_timer when removing the fscahe module.
- CVE-2024-46787:
In the Linux kernel, the following vulnerability has been resolved: userfaultfd: fix checks for huge PMDs Patch series "userfaultfd: fix races around pmd_trans_huge() check", v2. The pmd_trans_huge() code in mfill_atomic() is wrong in three different ways depending on kernel version: 1. The pmd_trans_huge() check is racy and can lead to a BUG_ON() (if you hit the right two race windows) - I've tested this in a kernel build with some extra mdelay() calls. See the commit message for a description of the race scenario. On older kernels (before 6.5), I think the same bug can even theoretically lead to accessing transhuge page contents as a page table if you hit the right 5 narrow race windows (I haven't tested this case). 2. As pointed out by Qi Zheng, pmd_trans_huge() is not sufficient for detecting PMDs that don't point to page tables. On older kernels (before 6.5), you'd just have to win a single fairly wide race to hit this. I've tested this on 6.1 stable by racing migration (with a mdelay() patched into try_to_migrate()) against UFFDIO_ZEROPAGE - on my x86 VM, that causes a kernel oops in ptlock_ptr(). 3. On newer kernels (>=6.5), for shmem mappings, khugepaged is allowed to yank page tables out from under us (though I haven't tested that), so I think the BUG_ON() checks in mfill_atomic() are just wrong. I decided to write two separate fixes for these (one fix for bugs 1+2, one fix for bug 3), so that the first fix can be backported to kernels affected by bugs 1+2. This patch (of 2): This fixes two issues. I discovered that the following race can occur: mfill_atomic other thread ============ ============ <zap PMD> pmdp_get_lockless() [reads none pmd] <bail if trans_huge> <if none:> <pagefault creates transhuge zeropage> __pte_alloc [no-op] <zap PMD> <bail if pmd_trans_huge(*dst_pmd)> BUG_ON(pmd_none(*dst_pmd)) I have experimentally verified this in a kernel with extra mdelay() calls; the BUG_ON(pmd_none(*dst_pmd)) triggers. On kernels newer than commit 0d940a9b270b ("mm/pgtable: allow pte_offset_map[_lock]() to fail"), this can't lead to anything worse than a BUG_ON(), since the page table access helpers are actually designed to deal with page tables concurrently disappearing; but on older kernels (<=6.4), I think we could probably theoretically race past the two BUG_ON() checks and end up treating a hugepage as a page table. The second issue is that, as Qi Zheng pointed out, there are other types of huge PMDs that pmd_trans_huge() can't catch: devmap PMDs and swap PMDs (in particular, migration PMDs). On <=6.4, this is worse than the first issue: If mfill_atomic() runs on a PMD that contains a migration entry (which just requires winning a single, fairly wide race), it will pass the PMD to pte_offset_map_lock(), which assumes that the PMD points to a page table. Breakage follows: First, the kernel tries to take the PTE lock (which will crash or maybe worse if there is no "struct page" for the address bits in the migration entry PMD - I think at least on X86 there usually is no corresponding "struct page" thanks to the PTE inversion mitigation, amd64 looks different). If that didn't crash, the kernel would next try to write a PTE into what it wrongly thinks is a page table. As part of fixing these issues, get rid of the check for pmd_trans_huge() before __pte_alloc() - that's redundant, we're going to have to check for that after the __pte_alloc() anyway. Backport note: pmdp_get_lockless() is pmd_read_atomic() in older kernels.
- CVE-2024-46803:
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Check debug trap enable before write dbg_ev_file In interrupt context, write dbg_ev_file will be run by work queue. It will cause write dbg_ev_file execution after debug_trap_disable, which will cause NULL pointer access. v2: cancel work "debug_event_workarea" before set dbg_ev_file as NULL.
- CVE-2024-46806:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix the warning division or modulo by zero Checks the partition mode and returns an error for an invalid mode.
- CVE-2024-46808:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add missing NULL pointer check within dpcd_extend_address_range [Why & How] ASSERT if return NULL from kcalloc.
- CVE-2024-46811:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix index may exceed array range within fpu_update_bw_bounding_box [Why] Coverity reports OVERRUN warning. soc.num_states could be 40. But array range of bw_params->clk_table.entries is 8. [How] Assert if soc.num_states greater than 8.
- CVE-2024-46813:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_index before accessing dc->links[] [WHY & HOW] dc->links[] has max size of MAX_LINKS and NULL is return when trying to access with out-of-bound index. This fixes 3 OVERRUN and 1 RESOURCE_LEAK issues reported by Coverity.
- CVE-2024-46816:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Stop amdgpu_dm initialize when link nums greater than max_links [Why] Coverity report OVERRUN warning. There are only max_links elements within dc->links. link count could up to AMDGPU_DM_MAX_DISPLAY_INDEX 31. [How] Make sure link count less than max_links.
- CVE-2024-46823:
In the Linux kernel, the following vulnerability has been resolved: kunit/overflow: Fix UB in overflow_allocation_test The 'device_name' array doesn't exist out of the 'overflow_allocation_test' function scope. However, it is being used as a driver name when calling 'kunit_driver_create' from 'kunit_device_register'. It produces the kernel panic with KASAN enabled. Since this variable is used in one place only, remove it and pass the device name into kunit_device_register directly as an ascii string.
- CVE-2024-46825:
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mvm: use IWL_FW_CHECK for link ID check The lookup function iwl_mvm_rcu_fw_link_id_to_link_conf() is normally called with input from the firmware, so it should use IWL_FW_CHECK() instead of WARN_ON().
- CVE-2024-46833:
In the Linux kernel, the following vulnerability has been resolved: net: hns3: void array out of bound when loop tnl_num When query reg inf of SSU, it loops tnl_num times. However, tnl_num comes from hardware and the length of array is a fixed value. To void array out of bound, make sure the loop time is not greater than the length of array
- CVE-2024-46834:
In the Linux kernel, the following vulnerability has been resolved: ethtool: fail closed if we can't get max channel used in indirection tables Commit 0d1b7d6c9274 ("bnxt: fix crashes when reducing ring count with active RSS contexts") proves that allowing indirection table to contain channels with out of bounds IDs may lead to crashes. Currently the max channel check in the core gets skipped if driver can't fetch the indirection table or when we can't allocate memory. Both of those conditions should be extremely rare but if they do happen we should try to be safe and fail the channel change.
- CVE-2024-46842:
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Handle mailbox timeouts in lpfc_get_sfp_info The MBX_TIMEOUT return code is not handled in lpfc_get_sfp_info and the routine unconditionally frees submitted mailbox commands regardless of return status. The issue is that for MBX_TIMEOUT cases, when firmware returns SFP information at a later time, that same mailbox memory region references previously freed memory in its cmpl routine. Fix by adding checks for the MBX_TIMEOUT return code. During mailbox resource cleanup, check the mbox flag to make sure that the wait did not timeout. If the MBOX_WAKE flag is not set, then do not free the resources because it will be freed when firmware completes the mailbox at a later time in its cmpl routine. Also, increase the timeout from 30 to 60 seconds to accommodate boot scripts requiring longer timeouts.
- CVE-2024-46843:
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Remove SCSI host only if added If host tries to remove ufshcd driver from a UFS device it would cause a kernel panic if ufshcd_async_scan fails during ufshcd_probe_hba before adding a SCSI host with scsi_add_host and MCQ is enabled since SCSI host has been defered after MCQ configuration introduced by commit 0cab4023ec7b ("scsi: ufs: core: Defer adding host to SCSI if MCQ is supported"). To guarantee that SCSI host is removed only if it has been added, set the scsi_host_added flag to true after adding a SCSI host and check whether it is set or not before removing it.
- CVE-2024-46860:
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7921: fix NULL pointer access in mt7921_ipv6_addr_change When disabling wifi mt7921_ipv6_addr_change() is called as a notifier. At this point mvif->phy is already NULL so we cannot use it here.
- CVE-2024-46870:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Disable DMCUB timeout for DCN35 [Why] DMCUB can intermittently take longer than expected to process commands. Old ASIC policy was to continue while logging a diagnostic error - which works fine for ASIC without IPS, but with IPS this could lead to a race condition where we attempt to access DCN state while it's inaccessible, leading to a system hang when the NIU port is not disabled or register accesses that timeout and the display configuration in an undefined state. [How] We need to investigate why these accesses take longer than expected, but for now we should disable the timeout on DCN35 to avoid this race condition. Since the waits happen only at lower interrupt levels the risk of taking too long at higher IRQ and causing a system watchdog timeout are minimal.
- CVE-2024-47141:
In the Linux kernel, the following vulnerability has been resolved: pinmux: Use sequential access to access desc->pinmux data When two client of the same gpio call pinctrl_select_state() for the same functionality, we are seeing NULL pointer issue while accessing desc->mux_owner. Let's say two processes A, B executing in pin_request() for the same pin and process A updates the desc->mux_usecount but not yet updated the desc->mux_owner while process B see the desc->mux_usecount which got updated by A path and further executes strcmp and while accessing desc->mux_owner it crashes with NULL pointer. Serialize the access to mux related setting with a mutex lock. cpu0 (process A) cpu1(process B) pinctrl_select_state() { pinctrl_select_state() { pin_request() { pin_request() { ... .... } else { desc->mux_usecount++; desc->mux_usecount && strcmp(desc->mux_owner, owner)) { if (desc->mux_usecount > 1) return 0; desc->mux_owner = owner; } }
- CVE-2024-47658:
In the Linux kernel, the following vulnerability has been resolved: crypto: stm32/cryp - call finalize with bh disabled The finalize operation in interrupt mode produce a produces a spinlock recursion warning. The reason is the fact that BH must be disabled during this process.
- CVE-2024-47661:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow from uint32_t to uint8_t [WHAT & HOW] dmub_rb_cmd's ramping_boundary has size of uint8_t and it is assigned 0xFFFF. Fix it by changing it to uint8_t with value of 0xFF. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity.
- CVE-2024-47662:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Remove register from DCN35 DMCUB diagnostic collection [Why] These registers should not be read from driver and triggering the security violation when DMCUB work times out and diagnostics are collected blocks Z8 entry. [How] Remove the register read from DCN35.
- CVE-2024-47664:
In the Linux kernel, the following vulnerability has been resolved: spi: hisi-kunpeng: Add verification for the max_frequency provided by the firmware If the value of max_speed_hz is 0, it may cause a division by zero error in hisi_calc_effective_speed(). The value of max_speed_hz is provided by firmware. Firmware is generally considered as a trusted domain. However, as division by zero errors can cause system failure, for defense measure, the value of max_speed is validated here. So 0 is regarded as invalid and an error code is returned.
- CVE-2024-47666:
In the Linux kernel, the following vulnerability has been resolved: scsi: pm80xx: Set phy->enable_completion only when we wait for it pm8001_phy_control() populates the enable_completion pointer with a stack address, sends a PHY_LINK_RESET / PHY_HARD_RESET, waits 300 ms, and returns. The problem arises when a phy control response comes late. After 300 ms the pm8001_phy_control() function returns and the passed enable_completion stack address is no longer valid. Late phy control response invokes complete() on a dangling enable_completion pointer which leads to a kernel crash.
- CVE-2024-47691:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread() syzbot reports a f2fs bug as below: __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114 print_report+0xe8/0x550 mm/kasan/report.c:491 kasan_report+0x143/0x180 mm/kasan/report.c:601 kasan_check_range+0x282/0x290 mm/kasan/generic.c:189 instrument_atomic_read_write include/linux/instrumented.h:96 [inline] atomic_fetch_add_relaxed include/linux/atomic/atomic-instrumented.h:252 [inline] __refcount_add include/linux/refcount.h:184 [inline] __refcount_inc include/linux/refcount.h:241 [inline] refcount_inc include/linux/refcount.h:258 [inline] get_task_struct include/linux/sched/task.h:118 [inline] kthread_stop+0xca/0x630 kernel/kthread.c:704 f2fs_stop_gc_thread+0x65/0xb0 fs/f2fs/gc.c:210 f2fs_do_shutdown+0x192/0x540 fs/f2fs/file.c:2283 f2fs_ioc_shutdown fs/f2fs/file.c:2325 [inline] __f2fs_ioctl+0x443a/0xbe60 fs/f2fs/file.c:4325 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The root cause is below race condition, it may cause use-after-free issue in sbi->gc_th pointer. - remount - f2fs_remount - f2fs_stop_gc_thread - kfree(gc_th) - f2fs_ioc_shutdown - f2fs_do_shutdown - f2fs_stop_gc_thread - kthread_stop(gc_th->f2fs_gc_task) : sbi->gc_thread = NULL; We will call f2fs_do_shutdown() in two paths: - for f2fs_ioc_shutdown() path, we should grab sb->s_umount semaphore for fixing. - for f2fs_shutdown() path, it's safe since caller has already grabbed sb->s_umount semaphore.
- CVE-2024-47703:
In the Linux kernel, the following vulnerability has been resolved: bpf, lsm: Add check for BPF LSM return value A bpf prog returning a positive number attached to file_alloc_security hook makes kernel panic. This happens because file system can not filter out the positive number returned by the LSM prog using IS_ERR, and misinterprets this positive number as a file pointer. Given that hook file_alloc_security never returned positive number before the introduction of BPF LSM, and other BPF LSM hooks may encounter similar issues, this patch adds LSM return value check in verifier, to ensure no unexpected value is returned.
- CVE-2024-47704:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check link_res->hpo_dp_link_enc before using it [WHAT & HOW] Functions dp_enable_link_phy and dp_disable_link_phy can pass link_res without initializing hpo_dp_link_enc and it is necessary to check for null before dereferencing. This fixes 2 FORWARD_NULL issues reported by Coverity.
- CVE-2024-47726:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to wait dio completion It should wait all existing dio write IOs before block removal, otherwise, previous direct write IO may overwrite data in the block which may be reused by other inode.
- CVE-2024-47736:
In the Linux kernel, the following vulnerability has been resolved: erofs: handle overlapped pclusters out of crafted images properly syzbot reported a task hang issue due to a deadlock case where it is waiting for the folio lock of a cached folio that will be used for cache I/Os. After looking into the crafted fuzzed image, I found it's formed with several overlapped big pclusters as below: Ext: logical offset | length : physical offset | length 0: 0.. 16384 | 16384 : 151552.. 167936 | 16384 1: 16384.. 32768 | 16384 : 155648.. 172032 | 16384 2: 32768.. 49152 | 16384 : 537223168.. 537239552 | 16384 ... Here, extent 0/1 are physically overlapped although it's entirely _impossible_ for normal filesystem images generated by mkfs. First, managed folios containing compressed data will be marked as up-to-date and then unlocked immediately (unlike in-place folios) when compressed I/Os are complete. If physical blocks are not submitted in the incremental order, there should be separate BIOs to avoid dependency issues. However, the current code mis-arranges z_erofs_fill_bio_vec() and BIO submission which causes unexpected BIO waits. Second, managed folios will be connected to their own pclusters for efficient inter-queries. However, this is somewhat hard to implement easily if overlapped big pclusters exist. Again, these only appear in fuzzed images so let's simply fall back to temporary short-lived pages for correctness. Additionally, it justifies that referenced managed folios cannot be truncated for now and reverts part of commit 2080ca1ed3e4 ("erofs: tidy up `struct z_erofs_bvec`") for simplicity although it shouldn't be any difference.
- CVE-2024-47752:
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix H264 stateless decoder smatch warning Fix a smatch static checker warning on vdec_h264_req_if.c. Which leads to a kernel crash when fb is NULL.
- CVE-2024-47753:
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix VP8 stateless decoder smatch warning Fix a smatch static checker warning on vdec_vp8_req_if.c. Which leads to a kernel crash when fb is NULL.
- CVE-2024-47754:
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Fix H264 multi stateless decoder smatch warning Fix a smatch static checker warning on vdec_h264_req_multi_if.c. Which leads to a kernel crash when fb is NULL.
- CVE-2024-47794:
In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tailcall infinite loop caused by freplace There is a potential infinite loop issue that can occur when using a combination of tail calls and freplace. In an upcoming selftest, the attach target for entry_freplace of tailcall_freplace.c is subprog_tc of tc_bpf2bpf.c, while the tail call in entry_freplace leads to entry_tc. This results in an infinite loop: entry_tc -> subprog_tc -> entry_freplace --tailcall-> entry_tc. The problem arises because the tail_call_cnt in entry_freplace resets to zero each time entry_freplace is executed, causing the tail call mechanism to never terminate, eventually leading to a kernel panic. To fix this issue, the solution is twofold: 1. Prevent updating a program extended by an freplace program to a prog_array map. 2. Prevent extending a program that is already part of a prog_array map with an freplace program. This ensures that: * If a program or its subprogram has been extended by an freplace program, it can no longer be updated to a prog_array map. * If a program has been added to a prog_array map, neither it nor its subprograms can be extended by an freplace program. Moreover, an extension program should not be tailcalled. As such, return -EINVAL if the program has a type of BPF_PROG_TYPE_EXT when adding it to a prog_array map. Additionally, fix a minor code style issue by replacing eight spaces with a tab for proper formatting.
- CVE-2024-47809:
In the Linux kernel, the following vulnerability has been resolved: dlm: fix possible lkb_resource null dereference This patch fixes a possible null pointer dereference when this function is called from request_lock() as lkb->lkb_resource is not assigned yet, only after validate_lock_args() by calling attach_lkb(). Another issue is that a resource name could be a non printable bytearray and we cannot assume to be ASCII coded. The log functionality is probably never being hit when DLM is used in normal way and no debug logging is enabled. The null pointer dereference can only occur on a new created lkb that does not have the resource assigned yet, it probably never hits the null pointer dereference but we should be sure that other changes might not change this behaviour and we actually can hit the mentioned null pointer dereference. In this patch we just drop the printout of the resource name, the lkb id is enough to make a possible connection to a resource name if this exists.
- CVE-2024-48875:
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't take dev_replace rwsem on task already holding it Running fstests btrfs/011 with MKFS_OPTIONS="-O rst" to force the usage of the RAID stripe-tree, we get the following splat from lockdep: BTRFS info (device sdd): dev_replace from /dev/sdd (devid 1) to /dev/sdb started ============================================ WARNING: possible recursive locking detected 6.11.0-rc3-btrfs-for-next #599 Not tainted -------------------------------------------- btrfs/2326 is trying to acquire lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 but task is already holding lock: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&fs_info->dev_replace.rwsem); lock(&fs_info->dev_replace.rwsem); *** DEADLOCK *** May be due to missing lock nesting notation 1 lock held by btrfs/2326: #0: ffff88810f215c98 (&fs_info->dev_replace.rwsem){++++}-{3:3}, at: btrfs_map_block+0x39f/0x2250 stack backtrace: CPU: 1 UID: 0 PID: 2326 Comm: btrfs Not tainted 6.11.0-rc3-btrfs-for-next #599 Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011 Call Trace: <TASK> dump_stack_lvl+0x5b/0x80 __lock_acquire+0x2798/0x69d0 ? __pfx___lock_acquire+0x10/0x10 ? __pfx___lock_acquire+0x10/0x10 lock_acquire+0x19d/0x4a0 ? btrfs_map_block+0x39f/0x2250 ? __pfx_lock_acquire+0x10/0x10 ? find_held_lock+0x2d/0x110 ? lock_is_held_type+0x8f/0x100 down_read+0x8e/0x440 ? btrfs_map_block+0x39f/0x2250 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x39f/0x2250 ? btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? btrfs_bio_counter_inc_blocked+0xd9/0x2e0 ? __kasan_slab_alloc+0x6e/0x70 ? __pfx_btrfs_map_block+0x10/0x10 ? __pfx_btrfs_bio_counter_inc_blocked+0x10/0x10 ? kmem_cache_alloc_noprof+0x1f2/0x300 ? mempool_alloc_noprof+0xed/0x2b0 btrfs_submit_chunk+0x28d/0x17e0 ? __pfx_btrfs_submit_chunk+0x10/0x10 ? bvec_alloc+0xd7/0x1b0 ? bio_add_folio+0x171/0x270 ? __pfx_bio_add_folio+0x10/0x10 ? __kasan_check_read+0x20/0x20 btrfs_submit_bio+0x37/0x80 read_extent_buffer_pages+0x3df/0x6c0 btrfs_read_extent_buffer+0x13e/0x5f0 read_tree_block+0x81/0xe0 read_block_for_search+0x4bd/0x7a0 ? __pfx_read_block_for_search+0x10/0x10 btrfs_search_slot+0x78d/0x2720 ? __pfx_btrfs_search_slot+0x10/0x10 ? lock_is_held_type+0x8f/0x100 ? kasan_save_track+0x14/0x30 ? __kasan_slab_alloc+0x6e/0x70 ? kmem_cache_alloc_noprof+0x1f2/0x300 btrfs_get_raid_extent_offset+0x181/0x820 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_btrfs_get_raid_extent_offset+0x10/0x10 ? down_read+0x194/0x440 ? __pfx_down_read+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 btrfs_map_block+0x5b5/0x2250 ? __pfx_btrfs_map_block+0x10/0x10 scrub_submit_initial_read+0x8fe/0x11b0 ? __pfx_scrub_submit_initial_read+0x10/0x10 submit_initial_group_read+0x161/0x3a0 ? lock_release+0x20e/0x710 ? __pfx_submit_initial_group_read+0x10/0x10 ? __pfx_lock_release+0x10/0x10 scrub_simple_mirror.isra.0+0x3eb/0x580 scrub_stripe+0xe4d/0x1440 ? lock_release+0x20e/0x710 ? __pfx_scrub_stripe+0x10/0x10 ? __pfx_lock_release+0x10/0x10 ? do_raw_read_unlock+0x44/0x70 ? _raw_read_unlock+0x23/0x40 scrub_chunk+0x257/0x4a0 scrub_enumerate_chunks+0x64c/0xf70 ? __mutex_unlock_slowpath+0x147/0x5f0 ? __pfx_scrub_enumerate_chunks+0x10/0x10 ? bit_wait_timeout+0xb0/0x170 ? __up_read+0x189/0x700 ? scrub_workers_get+0x231/0x300 ? up_write+0x490/0x4f0 btrfs_scrub_dev+0x52e/0xcd0 ? create_pending_snapshots+0x230/0x250 ? __pfx_btrfs_scrub_dev+0x10/0x10 btrfs_dev_replace_by_ioctl+0xd69/0x1d00 ? lock_acquire+0x19d/0x4a0 ? __pfx_btrfs_dev_replace_by_ioctl+0x10/0x10 ? ---truncated---
- CVE-2024-49568:
In the Linux kernel, the following vulnerability has been resolved: net/smc: check v2_ext_offset/eid_cnt/ism_gid_cnt when receiving proposal msg When receiving proposal msg in server, the fields v2_ext_offset/ eid_cnt/ism_gid_cnt in proposal msg are from the remote client and can not be fully trusted. Especially the field v2_ext_offset, once exceed the max value, there has the chance to access wrong address, and crash may happen. This patch checks the fields v2_ext_offset/eid_cnt/ism_gid_cnt before using them.
- CVE-2024-49569:
In the Linux kernel, the following vulnerability has been resolved: nvme-rdma: unquiesce admin_q before destroy it Kernel will hang on destroy admin_q while we create ctrl failed, such as following calltrace: PID: 23644 TASK: ff2d52b40f439fc0 CPU: 2 COMMAND: "nvme" #0 [ff61d23de260fb78] __schedule at ffffffff8323bc15 #1 [ff61d23de260fc08] schedule at ffffffff8323c014 #2 [ff61d23de260fc28] blk_mq_freeze_queue_wait at ffffffff82a3dba1 #3 [ff61d23de260fc78] blk_freeze_queue at ffffffff82a4113a #4 [ff61d23de260fc90] blk_cleanup_queue at ffffffff82a33006 #5 [ff61d23de260fcb0] nvme_rdma_destroy_admin_queue at ffffffffc12686ce #6 [ff61d23de260fcc8] nvme_rdma_setup_ctrl at ffffffffc1268ced #7 [ff61d23de260fd28] nvme_rdma_create_ctrl at ffffffffc126919b #8 [ff61d23de260fd68] nvmf_dev_write at ffffffffc024f362 #9 [ff61d23de260fe38] vfs_write at ffffffff827d5f25 RIP: 00007fda7891d574 RSP: 00007ffe2ef06958 RFLAGS: 00000202 RAX: ffffffffffffffda RBX: 000055e8122a4d90 RCX: 00007fda7891d574 RDX: 000000000000012b RSI: 000055e8122a4d90 RDI: 0000000000000004 RBP: 00007ffe2ef079c0 R8: 000000000000012b R9: 000055e8122a4d90 R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000004 R13: 000055e8122923c0 R14: 000000000000012b R15: 00007fda78a54500 ORIG_RAX: 0000000000000001 CS: 0033 SS: 002b This due to we have quiesced admi_q before cancel requests, but forgot to unquiesce before destroy it, as a result we fail to drain the pending requests, and hang on blk_mq_freeze_queue_wait() forever. Here try to reuse nvme_rdma_teardown_admin_queue() to fix this issue and simplify the code.
- CVE-2024-49893:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check stream_status before it is used [WHAT & HOW] dc_state_get_stream_status can return null, and therefore null must be checked before stream_status is used. This fixes 1 NULL_RETURNS issue reported by Coverity.
- CVE-2024-49901:
In the Linux kernel, the following vulnerability has been resolved: drm/msm/adreno: Assign msm_gpu->pdev earlier to avoid nullptrs There are some cases, such as the one uncovered by Commit 46d4efcccc68 ("drm/msm/a6xx: Avoid a nullptr dereference when speedbin setting fails") where msm_gpu_cleanup() : platform_set_drvdata(gpu->pdev, NULL); is called on gpu->pdev == NULL, as the GPU device has not been fully initialized yet. Turns out that there's more than just the aforementioned path that causes this to happen (e.g. the case when there's speedbin data in the catalog, but opp-supported-hw is missing in DT). Assigning msm_gpu->pdev earlier seems like the least painful solution to this, therefore do so. Patchwork: https://patchwork.freedesktop.org/patch/602742/
- CVE-2024-49906:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointer before try to access it [why & how] Change the order of the pipe_ctx->plane_state check to ensure that plane_state is not null before accessing it.
- CVE-2024-49908:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for 'afb' in amdgpu_dm_update_cursor (v2) This commit adds a null check for the 'afb' variable in the amdgpu_dm_update_cursor function. Previously, 'afb' was assumed to be null at line 8388, but was used later in the code without a null check. This could potentially lead to a null pointer dereference. Changes since v1: - Moved the null check for 'afb' to the line where 'afb' is used. (Alex) Fixes the below: drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm.c:8433 amdgpu_dm_update_cursor() error: we previously assumed 'afb' could be null (see line 8388)
- CVE-2024-49910:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for function pointer in dcn401_set_output_transfer_func This commit adds a null check for the set_output_gamma function pointer in the dcn401_set_output_transfer_func function. Previously, set_output_gamma was being checked for null, but then it was being dereferenced without any null check. This could lead to a null pointer dereference if set_output_gamma is null. To fix this, we now ensure that set_output_gamma is not null before dereferencing it. We do this by adding a null check for set_output_gamma before the call to set_output_gamma.
- CVE-2024-49914:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for pipe_ctx->plane_state in dcn20_program_pipe This commit addresses a null pointer dereference issue in the `dcn20_program_pipe` function. The issue could occur when `pipe_ctx->plane_state` is null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null before accessing. This prevents a null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn20/dcn20_hwseq.c:1925 dcn20_program_pipe() error: we previously assumed 'pipe_ctx->plane_state' could be null (see line 1877)
- CVE-2024-49916:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add NULL check for clk_mgr and clk_mgr->funcs in dcn401_init_hw This commit addresses a potential null pointer dereference issue in the `dcn401_init_hw` function. The issue could occur when `dc->clk_mgr` or `dc->clk_mgr->funcs` is null. The fix adds a check to ensure `dc->clk_mgr` and `dc->clk_mgr->funcs` is not null before accessing its functions. This prevents a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/hwss/dcn401/dcn401_hwseq.c:416 dcn401_init_hw() error: we previously assumed 'dc->clk_mgr' could be null (see line 225)
- CVE-2024-49918:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn32_acquire_idle_pipe_for_head_pipe_in_layer This commit addresses a potential null pointer dereference issue in the `dcn32_acquire_idle_pipe_for_head_pipe_in_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn32/dcn32_resource.c:2690 dcn32_acquire_idle_pipe_for_head_pipe_in_layer() error: we previously assumed 'head_pipe' could be null (see line 2681)
- CVE-2024-49919:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add null check for head_pipe in dcn201_acquire_free_pipe_for_layer This commit addresses a potential null pointer dereference issue in the `dcn201_acquire_free_pipe_for_layer` function. The issue could occur when `head_pipe` is null. The fix adds a check to ensure `head_pipe` is not null before asserting it. If `head_pipe` is null, the function returns NULL to prevent a potential null pointer dereference. Reported by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn201/dcn201_resource.c:1016 dcn201_acquire_free_pipe_for_layer() error: we previously assumed 'head_pipe' could be null (see line 1010)
- CVE-2024-49920:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before multiple uses [WHAT & HOW] Poniters, such as stream_enc and dc->bw_vbios, are null checked previously in the same function, so Coverity warns "implies that stream_enc and dc->bw_vbios might be null". They are used multiple times in the subsequent code and need to be checked. This fixes 10 FORWARD_NULL issues reported by Coverity.
- CVE-2024-49921:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before used [WHAT & HOW] Poniters, such as dc->clk_mgr, are null checked previously in the same function, so Coverity warns "implies that "dc->clk_mgr" might be null". As a result, these pointers need to be checked when used again. This fixes 10 FORWARD_NULL issues reported by Coverity.
- CVE-2024-49922:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Check null pointers before using them [WHAT & HOW] These pointers are null checked previously in the same function, indicating they might be null as reported by Coverity. As a result, they need to be checked when used again. This fixes 3 FORWARD_NULL issue reported by Coverity.
- CVE-2024-49923:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Pass non-null to dcn20_validate_apply_pipe_split_flags [WHAT & HOW] "dcn20_validate_apply_pipe_split_flags" dereferences merge, and thus it cannot be a null pointer. Let's pass a valid pointer to avoid null dereference. This fixes 2 FORWARD_NULL issues reported by Coverity.
- CVE-2024-49926:
In the Linux kernel, the following vulnerability has been resolved: rcu-tasks: Fix access non-existent percpu rtpcp variable in rcu_tasks_need_gpcb() For kernels built with CONFIG_FORCE_NR_CPUS=y, the nr_cpu_ids is defined as NR_CPUS instead of the number of possible cpus, this will cause the following system panic: smpboot: Allowing 4 CPUs, 0 hotplug CPUs ... setup_percpu: NR_CPUS:512 nr_cpumask_bits:512 nr_cpu_ids:512 nr_node_ids:1 ... BUG: unable to handle page fault for address: ffffffff9911c8c8 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 15 Comm: rcu_tasks_trace Tainted: G W 6.6.21 #1 5dc7acf91a5e8e9ac9dcfc35bee0245691283ea6 RIP: 0010:rcu_tasks_need_gpcb+0x25d/0x2c0 RSP: 0018:ffffa371c00a3e60 EFLAGS: 00010082 CR2: ffffffff9911c8c8 CR3: 000000040fa20005 CR4: 00000000001706f0 Call Trace: <TASK> ? __die+0x23/0x80 ? page_fault_oops+0xa4/0x180 ? exc_page_fault+0x152/0x180 ? asm_exc_page_fault+0x26/0x40 ? rcu_tasks_need_gpcb+0x25d/0x2c0 ? __pfx_rcu_tasks_kthread+0x40/0x40 rcu_tasks_one_gp+0x69/0x180 rcu_tasks_kthread+0x94/0xc0 kthread+0xe8/0x140 ? __pfx_kthread+0x40/0x40 ret_from_fork+0x34/0x80 ? __pfx_kthread+0x40/0x40 ret_from_fork_asm+0x1b/0x80 </TASK> Considering that there may be holes in the CPU numbers, use the maximum possible cpu number, instead of nr_cpu_ids, for configuring enqueue and dequeue limits. [ neeraj.upadhyay: Fix htmldocs build error reported by Stephen Rothwell ]
- CVE-2024-49928:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: avoid reading out of bounds when loading TX power FW elements Because the loop-expression will do one more time before getting false from cond-expression, the original code copied one more entry size beyond valid region. Fix it by moving the entry copy to loop-body.
- CVE-2024-49932:
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't readahead the relocation inode on RST On relocation we're doing readahead on the relocation inode, but if the filesystem is backed by a RAID stripe tree we can get ENOENT (e.g. due to preallocated extents not being mapped in the RST) from the lookup. But readahead doesn't handle the error and submits invalid reads to the device, causing an assertion in the scatter-gather list code: BTRFS info (device nvme1n1): balance: start -d -m -s BTRFS info (device nvme1n1): relocating block group 6480920576 flags data|raid0 BTRFS error (device nvme1n1): cannot find raid-stripe for logical [6481928192, 6481969152] devid 2, profile raid0 ------------[ cut here ]------------ kernel BUG at include/linux/scatterlist.h:115! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 0 PID: 1012 Comm: btrfs Not tainted 6.10.0-rc7+ #567 RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000000002cd11000 CR3: 00000001109ea001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x25 ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? __blk_rq_map_sg+0x339/0x4a0 ? exc_invalid_op+0x50/0x70 ? __blk_rq_map_sg+0x339/0x4a0 ? asm_exc_invalid_op+0x1a/0x20 ? __blk_rq_map_sg+0x339/0x4a0 nvme_prep_rq.part.0+0x9d/0x770 nvme_queue_rq+0x7d/0x1e0 __blk_mq_issue_directly+0x2a/0x90 ? blk_mq_get_budget_and_tag+0x61/0x90 blk_mq_try_issue_list_directly+0x56/0xf0 blk_mq_flush_plug_list.part.0+0x52b/0x5d0 __blk_flush_plug+0xc6/0x110 blk_finish_plug+0x28/0x40 read_pages+0x160/0x1c0 page_cache_ra_unbounded+0x109/0x180 relocate_file_extent_cluster+0x611/0x6a0 ? btrfs_search_slot+0xba4/0xd20 ? balance_dirty_pages_ratelimited_flags+0x26/0xb00 relocate_data_extent.constprop.0+0x134/0x160 relocate_block_group+0x3f2/0x500 btrfs_relocate_block_group+0x250/0x430 btrfs_relocate_chunk+0x3f/0x130 btrfs_balance+0x71b/0xef0 ? kmalloc_trace_noprof+0x13b/0x280 btrfs_ioctl+0x2c2e/0x3030 ? kvfree_call_rcu+0x1e6/0x340 ? list_lru_add_obj+0x66/0x80 ? mntput_no_expire+0x3a/0x220 __x64_sys_ioctl+0x96/0xc0 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7fcc04514f9b Code: Unable to access opcode bytes at 0x7fcc04514f71. RSP: 002b:00007ffeba923370 EFLAGS: 00000246 ORIG_RAX: 0000000000000010 RAX: ffffffffffffffda RBX: 0000000000000003 RCX: 00007fcc04514f9b RDX: 00007ffeba923460 RSI: 00000000c4009420 RDI: 0000000000000003 RBP: 0000000000000000 R08: 0000000000000013 R09: 0000000000000001 R10: 00007fcc043fbba8 R11: 0000000000000246 R12: 00007ffeba924fc5 R13: 00007ffeba923460 R14: 0000000000000002 R15: 00000000004d4bb0 </TASK> Modules linked in: ---[ end trace 0000000000000000 ]--- RIP: 0010:__blk_rq_map_sg+0x339/0x4a0 RSP: 0018:ffffc90001a43820 EFLAGS: 00010202 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffea00045d4802 RDX: 0000000117520000 RSI: 0000000000000000 RDI: ffff8881027d1000 RBP: 0000000000003000 R08: ffffea00045d4902 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000001000 R12: ffff8881003d10b8 R13: ffffc90001a438f0 R14: 0000000000000000 R15: 0000000000003000 FS: 00007fcc048a6900(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fcc04514f71 CR3: 00000001109ea001 CR4: 0000000000370eb0 Kernel p ---truncated---
- CVE-2024-49940:
In the Linux kernel, the following vulnerability has been resolved: l2tp: prevent possible tunnel refcount underflow When a session is created, it sets a backpointer to its tunnel. When the session refcount drops to 0, l2tp_session_free drops the tunnel refcount if session->tunnel is non-NULL. However, session->tunnel is set in l2tp_session_create, before the tunnel refcount is incremented by l2tp_session_register, which leaves a small window where session->tunnel is non-NULL when the tunnel refcount hasn't been bumped. Moving the assignment to l2tp_session_register is trivial but l2tp_session_create calls l2tp_session_set_header_len which uses session->tunnel to get the tunnel's encap. Add an encap arg to l2tp_session_set_header_len to avoid using session->tunnel. If l2tpv3 sessions have colliding IDs, it is possible for l2tp_v3_session_get to race with l2tp_session_register and fetch a session which doesn't yet have session->tunnel set. Add a check for this case.
- CVE-2024-49945:
In the Linux kernel, the following vulnerability has been resolved: net/ncsi: Disable the ncsi work before freeing the associated structure The work function can run after the ncsi device is freed, resulting in use-after-free bugs or kernel panic.
- CVE-2024-49968:
In the Linux kernel, the following vulnerability has been resolved: ext4: filesystems without casefold feature cannot be mounted with siphash When mounting the ext4 filesystem, if the default hash version is set to DX_HASH_SIPHASH but the casefold feature is not set, exit the mounting.
- CVE-2024-49970:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Implement bounds check for stream encoder creation in DCN401 'stream_enc_regs' array is an array of dcn10_stream_enc_registers structures. The array is initialized with four elements, corresponding to the four calls to stream_enc_regs() in the array initializer. This means that valid indices for this array are 0, 1, 2, and 3. The error message 'stream_enc_regs' 4 <= 5 below, is indicating that there is an attempt to access this array with an index of 5, which is out of bounds. This could lead to undefined behavior Here, eng_id is used as an index to access the stream_enc_regs array. If eng_id is 5, this would result in an out-of-bounds access on the stream_enc_regs array. Thus fixing Buffer overflow error in dcn401_stream_encoder_create Found by smatch: drivers/gpu/drm/amd/amdgpu/../display/dc/resource/dcn401/dcn401_resource.c:1209 dcn401_stream_encoder_create() error: buffer overflow 'stream_enc_regs' 4 <= 5
- CVE-2024-49972:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Deallocate DML memory if allocation fails [Why] When DC state create DML memory allocation fails, memory is not deallocated subsequently, resulting in uninitialized structure that is not NULL. [How] Deallocate memory if DML memory allocation fails.
- CVE-2024-49987:
In the Linux kernel, the following vulnerability has been resolved: bpftool: Fix undefined behavior in qsort(NULL, 0, ...) When netfilter has no entry to display, qsort is called with qsort(NULL, 0, ...). This results in undefined behavior, as UBSan reports: net.c:827:2: runtime error: null pointer passed as argument 1, which is declared to never be null Although the C standard does not explicitly state whether calling qsort with a NULL pointer when the size is 0 constitutes undefined behavior, Section 7.1.4 of the C standard (Use of library functions) mentions: "Each of the following statements applies unless explicitly stated otherwise in the detailed descriptions that follow: If an argument to a function has an invalid value (such as a value outside the domain of the function, or a pointer outside the address space of the program, or a null pointer, or a pointer to non-modifiable storage when the corresponding parameter is not const-qualified) or a type (after promotion) not expected by a function with variable number of arguments, the behavior is undefined." To avoid this, add an early return when nf_link_info is NULL to prevent calling qsort with a NULL pointer.
- CVE-2024-49988:
In the Linux kernel, the following vulnerability has been resolved: ksmbd: add refcnt to ksmbd_conn struct When sending an oplock break request, opinfo->conn is used, But freed ->conn can be used on multichannel. This patch add a reference count to the ksmbd_conn struct so that it can be freed when it is no longer used.
- CVE-2024-49989:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: fix double free issue during amdgpu module unload Flexible endpoints use DIGs from available inflexible endpoints, so only the encoders of inflexible links need to be freed. Otherwise, a double free issue may occur when unloading the amdgpu module. [ 279.190523] RIP: 0010:__slab_free+0x152/0x2f0 [ 279.190577] Call Trace: [ 279.190580] <TASK> [ 279.190582] ? show_regs+0x69/0x80 [ 279.190590] ? die+0x3b/0x90 [ 279.190595] ? do_trap+0xc8/0xe0 [ 279.190601] ? do_error_trap+0x73/0xa0 [ 279.190605] ? __slab_free+0x152/0x2f0 [ 279.190609] ? exc_invalid_op+0x56/0x70 [ 279.190616] ? __slab_free+0x152/0x2f0 [ 279.190642] ? asm_exc_invalid_op+0x1f/0x30 [ 279.190648] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191096] ? __slab_free+0x152/0x2f0 [ 279.191102] ? dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191469] kfree+0x260/0x2b0 [ 279.191474] dcn10_link_encoder_destroy+0x19/0x30 [amdgpu] [ 279.191821] link_destroy+0xd7/0x130 [amdgpu] [ 279.192248] dc_destruct+0x90/0x270 [amdgpu] [ 279.192666] dc_destroy+0x19/0x40 [amdgpu] [ 279.193020] amdgpu_dm_fini+0x16e/0x200 [amdgpu] [ 279.193432] dm_hw_fini+0x26/0x40 [amdgpu] [ 279.193795] amdgpu_device_fini_hw+0x24c/0x400 [amdgpu] [ 279.194108] amdgpu_driver_unload_kms+0x4f/0x70 [amdgpu] [ 279.194436] amdgpu_pci_remove+0x40/0x80 [amdgpu] [ 279.194632] pci_device_remove+0x3a/0xa0 [ 279.194638] device_remove+0x40/0x70 [ 279.194642] device_release_driver_internal+0x1ad/0x210 [ 279.194647] driver_detach+0x4e/0xa0 [ 279.194650] bus_remove_driver+0x6f/0xf0 [ 279.194653] driver_unregister+0x33/0x60 [ 279.194657] pci_unregister_driver+0x44/0x90 [ 279.194662] amdgpu_exit+0x19/0x1f0 [amdgpu] [ 279.194939] __do_sys_delete_module.isra.0+0x198/0x2f0 [ 279.194946] __x64_sys_delete_module+0x16/0x20 [ 279.194950] do_syscall_64+0x58/0x120 [ 279.194954] entry_SYSCALL_64_after_hwframe+0x6e/0x76 [ 279.194980] </TASK>
- CVE-2024-49998:
In the Linux kernel, the following vulnerability has been resolved: net: dsa: improve shutdown sequence Alexander Sverdlin presents 2 problems during shutdown with the lan9303 driver. One is specific to lan9303 and the other just happens to reproduce there. The first problem is that lan9303 is unique among DSA drivers in that it calls dev_get_drvdata() at "arbitrary runtime" (not probe, not shutdown, not remove): phy_state_machine() -> ... -> dsa_user_phy_read() -> ds->ops->phy_read() -> lan9303_phy_read() -> chip->ops->phy_read() -> lan9303_mdio_phy_read() -> dev_get_drvdata() But we never stop the phy_state_machine(), so it may continue to run after dsa_switch_shutdown(). Our common pattern in all DSA drivers is to set drvdata to NULL to suppress the remove() method that may come afterwards. But in this case it will result in an NPD. The second problem is that the way in which we set dp->conduit->dsa_ptr = NULL; is concurrent with receive packet processing. dsa_switch_rcv() checks once whether dev->dsa_ptr is NULL, but afterwards, rather than continuing to use that non-NULL value, dev->dsa_ptr is dereferenced again and again without NULL checks: dsa_conduit_find_user() and many other places. In between dereferences, there is no locking to ensure that what was valid once continues to be valid. Both problems have the common aspect that closing the conduit interface solves them. In the first case, dev_close(conduit) triggers the NETDEV_GOING_DOWN event in dsa_user_netdevice_event() which closes user ports as well. dsa_port_disable_rt() calls phylink_stop(), which synchronously stops the phylink state machine, and ds->ops->phy_read() will thus no longer call into the driver after this point. In the second case, dev_close(conduit) should do this, as per Documentation/networking/driver.rst: | Quiescence | ---------- | | After the ndo_stop routine has been called, the hardware must | not receive or transmit any data. All in flight packets must | be aborted. If necessary, poll or wait for completion of | any reset commands. So it should be sufficient to ensure that later, when we zeroize conduit->dsa_ptr, there will be no concurrent dsa_switch_rcv() call on this conduit. The addition of the netif_device_detach() function is to ensure that ioctls, rtnetlinks and ethtool requests on the user ports no longer propagate down to the driver - we're no longer prepared to handle them. The race condition actually did not exist when commit 0650bf52b31f ("net: dsa: be compatible with masters which unregister on shutdown") first introduced dsa_switch_shutdown(). It was created later, when we stopped unregistering the user interfaces from a bad spot, and we just replaced that sequence with a racy zeroization of conduit->dsa_ptr (one which doesn't ensure that the interfaces aren't up).
- CVE-2024-50009:
In the Linux kernel, the following vulnerability has been resolved: cpufreq: amd-pstate: add check for cpufreq_cpu_get's return value cpufreq_cpu_get may return NULL. To avoid NULL-dereference check it and return in case of error. Found by Linux Verification Center (linuxtesting.org) with SVACE.
- CVE-2024-50016:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Avoid overflow assignment in link_dp_cts sampling_rate is an uint8_t but is assigned an unsigned int, and thus it can overflow. As a result, sampling_rate is changed to uint32_t. Similarly, LINK_QUAL_PATTERN_SET has a size of 2 bits, and it should only be assigned to a value less or equal than 4. This fixes 2 INTEGER_OVERFLOW issues reported by Coverity.
- CVE-2024-50017:
In the Linux kernel, the following vulnerability has been resolved: x86/mm/ident_map: Use gbpages only where full GB page should be mapped. When ident_pud_init() uses only GB pages to create identity maps, large ranges of addresses not actually requested can be included in the resulting table; a 4K request will map a full GB. This can include a lot of extra address space past that requested, including areas marked reserved by the BIOS. That allows processor speculation into reserved regions, that on UV systems can cause system halts. Only use GB pages when map creation requests include the full GB page of space. Fall back to using smaller 2M pages when only portions of a GB page are included in the request. No attempt is made to coalesce mapping requests. If a request requires a map entry at the 2M (pmd) level, subsequent mapping requests within the same 1G region will also be at the pmd level, even if adjacent or overlapping such requests could have been combined to map a full GB page. Existing usage starts with larger regions and then adds smaller regions, so this should not have any great consequence.
- CVE-2024-50028:
In the Linux kernel, the following vulnerability has been resolved: thermal: core: Reference count the zone in thermal_zone_get_by_id() There are places in the thermal netlink code where nothing prevents the thermal zone object from going away while being accessed after it has been returned by thermal_zone_get_by_id(). To address this, make thermal_zone_get_by_id() get a reference on the thermal zone device object to be returned with the help of get_device(), under thermal_list_lock, and adjust all of its callers to this change with the help of the cleanup.h infrastructure.
- CVE-2024-50029:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Fix UAF in hci_enhanced_setup_sync This checks if the ACL connection remains valid as it could be destroyed while hci_enhanced_setup_sync is pending on cmd_sync leading to the following trace: BUG: KASAN: slab-use-after-free in hci_enhanced_setup_sync+0x91b/0xa60 Read of size 1 at addr ffff888002328ffd by task kworker/u5:2/37 CPU: 0 UID: 0 PID: 37 Comm: kworker/u5:2 Not tainted 6.11.0-rc6-01300-g810be445d8d6 #7099 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-2.fc40 04/01/2014 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> dump_stack_lvl+0x5d/0x80 ? hci_enhanced_setup_sync+0x91b/0xa60 print_report+0x152/0x4c0 ? hci_enhanced_setup_sync+0x91b/0xa60 ? __virt_addr_valid+0x1fa/0x420 ? hci_enhanced_setup_sync+0x91b/0xa60 kasan_report+0xda/0x1b0 ? hci_enhanced_setup_sync+0x91b/0xa60 hci_enhanced_setup_sync+0x91b/0xa60 ? __pfx_hci_enhanced_setup_sync+0x10/0x10 ? __pfx___mutex_lock+0x10/0x10 hci_cmd_sync_work+0x1c2/0x330 process_one_work+0x7d9/0x1360 ? __pfx_lock_acquire+0x10/0x10 ? __pfx_process_one_work+0x10/0x10 ? assign_work+0x167/0x240 worker_thread+0x5b7/0xf60 ? __kthread_parkme+0xac/0x1c0 ? __pfx_worker_thread+0x10/0x10 ? __pfx_worker_thread+0x10/0x10 kthread+0x293/0x360 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2f/0x70 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 34: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __hci_conn_add+0x187/0x17d0 hci_connect_sco+0x2e1/0xb90 sco_sock_connect+0x2a2/0xb80 __sys_connect+0x227/0x2a0 __x64_sys_connect+0x6d/0xb0 do_syscall_64+0x71/0x140 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 37: kasan_save_stack+0x30/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x101/0x160 kfree+0xd0/0x250 device_release+0x9a/0x210 kobject_put+0x151/0x280 hci_conn_del+0x448/0xbf0 hci_abort_conn_sync+0x46f/0x980 hci_cmd_sync_work+0x1c2/0x330 process_one_work+0x7d9/0x1360 worker_thread+0x5b7/0xf60 kthread+0x293/0x360 ret_from_fork+0x2f/0x70 ret_from_fork_asm+0x1a/0x30
- CVE-2024-50032:
In the Linux kernel, the following vulnerability has been resolved: rcu/nocb: Fix rcuog wake-up from offline softirq After a CPU has set itself offline and before it eventually calls rcutree_report_cpu_dead(), there are still opportunities for callbacks to be enqueued, for example from a softirq. When that happens on NOCB, the rcuog wake-up is deferred through an IPI to an online CPU in order not to call into the scheduler and risk arming the RT-bandwidth after hrtimers have been migrated out and disabled. But performing a synchronized IPI from a softirq is buggy as reported in the following scenario: WARNING: CPU: 1 PID: 26 at kernel/smp.c:633 smp_call_function_single Modules linked in: rcutorture torture CPU: 1 UID: 0 PID: 26 Comm: migration/1 Not tainted 6.11.0-rc1-00012-g9139f93209d1 #1 Stopper: multi_cpu_stop+0x0/0x320 <- __stop_cpus+0xd0/0x120 RIP: 0010:smp_call_function_single <IRQ> swake_up_one_online __call_rcu_nocb_wake __call_rcu_common ? rcu_torture_one_read call_timer_fn __run_timers run_timer_softirq handle_softirqs irq_exit_rcu ? tick_handle_periodic sysvec_apic_timer_interrupt </IRQ> Fix this with forcing deferred rcuog wake up through the NOCB timer when the CPU is offline. The actual wake up will happen from rcutree_report_cpu_dead().
- CVE-2024-50056:
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: uvc: Fix ERR_PTR dereference in uvc_v4l2.c Fix potential dereferencing of ERR_PTR() in find_format_by_pix() and uvc_v4l2_enum_format(). Fix the following smatch errors: drivers/usb/gadget/function/uvc_v4l2.c:124 find_format_by_pix() error: 'fmtdesc' dereferencing possible ERR_PTR() drivers/usb/gadget/function/uvc_v4l2.c:392 uvc_v4l2_enum_format() error: 'fmtdesc' dereferencing possible ERR_PTR() Also, fix similar issue in uvc_v4l2_try_format() for potential dereferencing of ERR_PTR().
- CVE-2024-50057:
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tipd: Free IRQ only if it was requested before In polling mode, if no IRQ was requested there is no need to free it. Call devm_free_irq() only if client->irq is set. This fixes the warning caused by the tps6598x module removal: WARNING: CPU: 2 PID: 333 at kernel/irq/devres.c:144 devm_free_irq+0x80/0x8c ... ... Call trace: devm_free_irq+0x80/0x8c tps6598x_remove+0x28/0x88 [tps6598x] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x50/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 tps6598x_i2c_driver_exit+0x18/0xc3c [tps6598x] __arm64_sys_delete_module+0x184/0x264 invoke_syscall+0x48/0x110 el0_svc_common.constprop.0+0xc8/0xe8 do_el0_svc+0x20/0x2c el0_svc+0x28/0x98 el0t_64_sync_handler+0x13c/0x158 el0t_64_sync+0x190/0x194
- CVE-2024-50061:
In the Linux kernel, the following vulnerability has been resolved: i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition In the cdns_i3c_master_probe function, &master->hj_work is bound with cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call cnds_i3c_master_demux_ibis function to start the work. If we remove the module which will call cdns_i3c_master_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | cdns_i3c_master_hj cdns_i3c_master_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in cdns_i3c_master_remove.
- CVE-2024-50063:
In the Linux kernel, the following vulnerability has been resolved: bpf: Prevent tail call between progs attached to different hooks bpf progs can be attached to kernel functions, and the attached functions can take different parameters or return different return values. If prog attached to one kernel function tail calls prog attached to another kernel function, the ctx access or return value verification could be bypassed. For example, if prog1 is attached to func1 which takes only 1 parameter and prog2 is attached to func2 which takes two parameters. Since verifier assumes the bpf ctx passed to prog2 is constructed based on func2's prototype, verifier allows prog2 to access the second parameter from the bpf ctx passed to it. The problem is that verifier does not prevent prog1 from passing its bpf ctx to prog2 via tail call. In this case, the bpf ctx passed to prog2 is constructed from func1 instead of func2, that is, the assumption for ctx access verification is bypassed. Another example, if BPF LSM prog1 is attached to hook file_alloc_security, and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier knows the return value rules for these two hooks, e.g. it is legal for bpf_lsm_audit_rule_known to return positive number 1, and it is illegal for file_alloc_security to return positive number. So verifier allows prog2 to return positive number 1, but does not allow prog1 to return positive number. The problem is that verifier does not prevent prog1 from calling prog2 via tail call. In this case, prog2's return value 1 will be used as the return value for prog1's hook file_alloc_security. That is, the return value rule is bypassed. This patch adds restriction for tail call to prevent such bypasses.
- CVE-2024-50111:
In the Linux kernel, the following vulnerability has been resolved: LoongArch: Enable IRQ if do_ale() triggered in irq-enabled context Unaligned access exception can be triggered in irq-enabled context such as user mode, in this case do_ale() may call get_user() which may cause sleep. Then we will get: BUG: sleeping function called from invalid context at arch/loongarch/kernel/access-helper.h:7 in_atomic(): 0, irqs_disabled(): 1, non_block: 0, pid: 129, name: modprobe preempt_count: 0, expected: 0 RCU nest depth: 0, expected: 0 CPU: 0 UID: 0 PID: 129 Comm: modprobe Tainted: G W 6.12.0-rc1+ #1723 Tainted: [W]=WARN Stack : 9000000105e0bd48 0000000000000000 9000000003803944 9000000105e08000 9000000105e0bc70 9000000105e0bc78 0000000000000000 0000000000000000 9000000105e0bc78 0000000000000001 9000000185e0ba07 9000000105e0b890 ffffffffffffffff 9000000105e0bc78 73924b81763be05b 9000000100194500 000000000000020c 000000000000000a 0000000000000000 0000000000000003 00000000000023f0 00000000000e1401 00000000072f8000 0000007ffbb0e260 0000000000000000 0000000000000000 9000000005437650 90000000055d5000 0000000000000000 0000000000000003 0000007ffbb0e1f0 0000000000000000 0000005567b00490 0000000000000000 9000000003803964 0000007ffbb0dfec 00000000000000b0 0000000000000007 0000000000000003 0000000000071c1d ... Call Trace: [<9000000003803964>] show_stack+0x64/0x1a0 [<9000000004c57464>] dump_stack_lvl+0x74/0xb0 [<9000000003861ab4>] __might_resched+0x154/0x1a0 [<900000000380c96c>] emulate_load_store_insn+0x6c/0xf60 [<9000000004c58118>] do_ale+0x78/0x180 [<9000000003801bc8>] handle_ale+0x128/0x1e0 So enable IRQ if unaligned access exception is triggered in irq-enabled context to fix it.
- CVE-2024-50112:
In the Linux kernel, the following vulnerability has been resolved: x86/lam: Disable ADDRESS_MASKING in most cases Linear Address Masking (LAM) has a weakness related to transient execution as described in the SLAM paper[1]. Unless Linear Address Space Separation (LASS) is enabled this weakness may be exploitable. Until kernel adds support for LASS[2], only allow LAM for COMPILE_TEST, or when speculation mitigations have been disabled at compile time, otherwise keep LAM disabled. There are no processors in market that support LAM yet, so currently nobody is affected by this issue. [1] SLAM: https://download.vusec.net/papers/slam_sp24.pdf [2] LASS: https://lore.kernel.org/lkml/20230609183632.48706-1-alexander.shishkin@linux.intel.com/ [ dhansen: update SPECULATION_MITIGATIONS -> CPU_MITIGATIONS ]
- CVE-2024-50135:
In the Linux kernel, the following vulnerability has been resolved: nvme-pci: fix race condition between reset and nvme_dev_disable() nvme_dev_disable() modifies the dev->online_queues field, therefore nvme_pci_update_nr_queues() should avoid racing against it, otherwise we could end up passing invalid values to blk_mq_update_nr_hw_queues(). WARNING: CPU: 39 PID: 61303 at drivers/pci/msi/api.c:347 pci_irq_get_affinity+0x187/0x210 Workqueue: nvme-reset-wq nvme_reset_work [nvme] RIP: 0010:pci_irq_get_affinity+0x187/0x210 Call Trace: <TASK> ? blk_mq_pci_map_queues+0x87/0x3c0 ? pci_irq_get_affinity+0x187/0x210 blk_mq_pci_map_queues+0x87/0x3c0 nvme_pci_map_queues+0x189/0x460 [nvme] blk_mq_update_nr_hw_queues+0x2a/0x40 nvme_reset_work+0x1be/0x2a0 [nvme] Fix the bug by locking the shutdown_lock mutex before using dev->online_queues. Give up if nvme_dev_disable() is running or if it has been executed already.
- CVE-2024-50166:
In the Linux kernel, the following vulnerability has been resolved: fsl/fman: Fix refcount handling of fman-related devices In mac_probe() there are multiple calls to of_find_device_by_node(), fman_bind() and fman_port_bind() which takes references to of_dev->dev. Not all references taken by these calls are released later on error path in mac_probe() and in mac_remove() which lead to reference leaks. Add references release.
- CVE-2024-50211:
In the Linux kernel, the following vulnerability has been resolved: udf: refactor inode_bmap() to handle error Refactor inode_bmap() to handle error since udf_next_aext() can return error now. On situations like ftruncate, udf_extend_file() can now detect errors and bail out early without resorting to checking for particular offsets and assuming internal behavior of these functions.
- CVE-2024-50217:
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free of block device file in __btrfs_free_extra_devids() Mounting btrfs from two images (which have the same one fsid and two different dev_uuids) in certain executing order may trigger an UAF for variable 'device->bdev_file' in __btrfs_free_extra_devids(). And following are the details: 1. Attach image_1 to loop0, attach image_2 to loop1, and scan btrfs devices by ioctl(BTRFS_IOC_SCAN_DEV): / btrfs_device_1 → loop0 fs_device \ btrfs_device_2 → loop1 2. mount /dev/loop0 /mnt btrfs_open_devices btrfs_device_1->bdev_file = btrfs_get_bdev_and_sb(loop0) btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree fail: btrfs_close_devices // -ENOMEM btrfs_close_bdev(btrfs_device_1) fput(btrfs_device_1->bdev_file) // btrfs_device_1->bdev_file is freed btrfs_close_bdev(btrfs_device_2) fput(btrfs_device_2->bdev_file) 3. mount /dev/loop1 /mnt btrfs_open_devices btrfs_get_bdev_and_sb(&bdev_file) // EIO, btrfs_device_1->bdev_file is not assigned, // which points to a freed memory area btrfs_device_2->bdev_file = btrfs_get_bdev_and_sb(loop1) btrfs_fill_super open_ctree btrfs_free_extra_devids if (btrfs_device_1->bdev_file) fput(btrfs_device_1->bdev_file) // UAF ! Fix it by setting 'device->bdev_file' as 'NULL' after closing the btrfs_device in btrfs_close_one_device().
- CVE-2024-50226:
In the Linux kernel, the following vulnerability has been resolved: cxl/port: Fix use-after-free, permit out-of-order decoder shutdown In support of investigating an initialization failure report [1], cxl_test was updated to register mock memory-devices after the mock root-port/bus device had been registered. That led to cxl_test crashing with a use-after-free bug with the following signature: cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem0:decoder7.0 @ 0 next: cxl_switch_uport.0 nr_eps: 1 nr_targets: 1 cxl_port_attach_region: cxl region3: cxl_host_bridge.0:port3 decoder3.0 add: mem4:decoder14.0 @ 1 next: cxl_switch_uport.0 nr_eps: 2 nr_targets: 1 cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[0] = cxl_switch_dport.0 for mem0:decoder7.0 @ 0 1) cxl_port_setup_targets: cxl region3: cxl_switch_uport.0:port6 target[1] = cxl_switch_dport.4 for mem4:decoder14.0 @ 1 [..] cxld_unregister: cxl decoder14.0: cxl_region_decode_reset: cxl_region region3: mock_decoder_reset: cxl_port port3: decoder3.0 reset 2) mock_decoder_reset: cxl_port port3: decoder3.0: out of order reset, expected decoder3.1 cxl_endpoint_decoder_release: cxl decoder14.0: [..] cxld_unregister: cxl decoder7.0: 3) cxl_region_decode_reset: cxl_region region3: Oops: general protection fault, probably for non-canonical address 0x6b6b6b6b6b6b6bc3: 0000 [#1] PREEMPT SMP PTI [..] RIP: 0010:to_cxl_port+0x8/0x60 [cxl_core] [..] Call Trace: <TASK> cxl_region_decode_reset+0x69/0x190 [cxl_core] cxl_region_detach+0xe8/0x210 [cxl_core] cxl_decoder_kill_region+0x27/0x40 [cxl_core] cxld_unregister+0x5d/0x60 [cxl_core] At 1) a region has been established with 2 endpoint decoders (7.0 and 14.0). Those endpoints share a common switch-decoder in the topology (3.0). At teardown, 2), decoder14.0 is the first to be removed and hits the "out of order reset case" in the switch decoder. The effect though is that region3 cleanup is aborted leaving it in-tact and referencing decoder14.0. At 3) the second attempt to teardown region3 trips over the stale decoder14.0 object which has long since been deleted. The fix here is to recognize that the CXL specification places no mandate on in-order shutdown of switch-decoders, the driver enforces in-order allocation, and hardware enforces in-order commit. So, rather than fail and leave objects dangling, always remove them. In support of making cxl_region_decode_reset() always succeed, cxl_region_invalidate_memregion() failures are turned into warnings. Crashing the kernel is ok there since system integrity is at risk if caches cannot be managed around physical address mutation events like CXL region destruction. A new device_for_each_child_reverse_from() is added to cleanup port->commit_end after all dependent decoders have been disabled. In other words if decoders are allocated 0->1->2 and disabled 1->2->0 then port->commit_end only decrements from 2 after 2 has been disabled, and it decrements all the way to zero since 1 was disabled previously.
- CVE-2024-50246:
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Add rough attr alloc_size check
- CVE-2024-50277:
In the Linux kernel, the following vulnerability has been resolved: dm: fix a crash if blk_alloc_disk fails If blk_alloc_disk fails, the variable md->disk is set to an error value. cleanup_mapped_device will see that md->disk is non-NULL and it will attempt to access it, causing a crash on this statement "md->disk->private_data = NULL;".
- CVE-2024-50285:
In the Linux kernel, the following vulnerability has been resolved: ksmbd: check outstanding simultaneous SMB operations If Client send simultaneous SMB operations to ksmbd, It exhausts too much memory through the "ksmbd_work_cache”. It will cause OOM issue. ksmbd has a credit mechanism but it can't handle this problem. This patch add the check if it exceeds max credits to prevent this problem by assuming that one smb request consumes at least one credit.
- CVE-2024-50289:
In the Linux kernel, the following vulnerability has been resolved: media: av7110: fix a spectre vulnerability As warned by smatch: drivers/staging/media/av7110/av7110_ca.c:270 dvb_ca_ioctl() warn: potential spectre issue 'av7110->ci_slot' [w] (local cap) There is a spectre-related vulnerability at the code. Fix it.
- CVE-2024-50298:
In the Linux kernel, the following vulnerability has been resolved: net: enetc: allocate vf_state during PF probes In the previous implementation, vf_state is allocated memory only when VF is enabled. However, net_device_ops::ndo_set_vf_mac() may be called before VF is enabled to configure the MAC address of VF. If this is the case, enetc_pf_set_vf_mac() will access vf_state, resulting in access to a null pointer. The simplified error log is as follows. root@ls1028ardb:~# ip link set eno0 vf 1 mac 00:0c:e7:66:77:89 [ 173.543315] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 [ 173.637254] pc : enetc_pf_set_vf_mac+0x3c/0x80 Message from sy [ 173.641973] lr : do_setlink+0x4a8/0xec8 [ 173.732292] Call trace: [ 173.734740] enetc_pf_set_vf_mac+0x3c/0x80 [ 173.738847] __rtnl_newlink+0x530/0x89c [ 173.742692] rtnl_newlink+0x50/0x7c [ 173.746189] rtnetlink_rcv_msg+0x128/0x390 [ 173.750298] netlink_rcv_skb+0x60/0x130 [ 173.754145] rtnetlink_rcv+0x18/0x24 [ 173.757731] netlink_unicast+0x318/0x380 [ 173.761665] netlink_sendmsg+0x17c/0x3c8
- CVE-2024-52559:
In the Linux kernel, the following vulnerability has been resolved: drm/msm/gem: prevent integer overflow in msm_ioctl_gem_submit() The "submit->cmd[i].size" and "submit->cmd[i].offset" variables are u32 values that come from the user via the submit_lookup_cmds() function. This addition could lead to an integer wrapping bug so use size_add() to prevent that. Patchwork: https://patchwork.freedesktop.org/patch/624696/
- CVE-2024-52560:
In the Linux kernel, the following vulnerability has been resolved: fs/ntfs3: Mark inode as bad as soon as error detected in mi_enum_attr() Extended the `mi_enum_attr()` function interface with an additional parameter, `struct ntfs_inode *ni`, to allow marking the inode as bad as soon as an error is detected.
- CVE-2024-53050:
In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in hdcp2_get_capability Add encoder check in intel_hdcp2_get_capability to avoid null pointer error.
- CVE-2024-53051:
In the Linux kernel, the following vulnerability has been resolved: drm/i915/hdcp: Add encoder check in intel_hdcp_get_capability Sometimes during hotplug scenario or suspend/resume scenario encoder is not always initialized when intel_hdcp_get_capability add a check to avoid kernel null pointer dereference.
- CVE-2024-53056:
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Fix potential NULL dereference in mtk_crtc_destroy() In mtk_crtc_create(), if the call to mbox_request_channel() fails then we set the "mtk_crtc->cmdq_client.chan" pointer to NULL. In that situation, we do not call cmdq_pkt_create(). During the cleanup, we need to check if the "mtk_crtc->cmdq_client.chan" is NULL first before calling cmdq_pkt_destroy(). Calling cmdq_pkt_destroy() is unnecessary if we didn't call cmdq_pkt_create() and it will result in a NULL pointer dereference.
- CVE-2024-53068:
In the Linux kernel, the following vulnerability has been resolved: firmware: arm_scmi: Fix slab-use-after-free in scmi_bus_notifier() The scmi_dev->name is released prematurely in __scmi_device_destroy(), which causes slab-use-after-free when accessing scmi_dev->name in scmi_bus_notifier(). So move the release of scmi_dev->name to scmi_device_release() to avoid slab-use-after-free. | BUG: KASAN: slab-use-after-free in strncmp+0xe4/0xec | Read of size 1 at addr ffffff80a482bcc0 by task swapper/0/1 | | CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.6.38-debug #1 | Hardware name: Qualcomm Technologies, Inc. SA8775P Ride (DT) | Call trace: | dump_backtrace+0x94/0x114 | show_stack+0x18/0x24 | dump_stack_lvl+0x48/0x60 | print_report+0xf4/0x5b0 | kasan_report+0xa4/0xec | __asan_report_load1_noabort+0x20/0x2c | strncmp+0xe4/0xec | scmi_bus_notifier+0x5c/0x54c | notifier_call_chain+0xb4/0x31c | blocking_notifier_call_chain+0x68/0x9c | bus_notify+0x54/0x78 | device_del+0x1bc/0x840 | device_unregister+0x20/0xb4 | __scmi_device_destroy+0xac/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Allocated by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_alloc_info+0x24/0x34 | __kasan_kmalloc+0xa0/0xb8 | __kmalloc_node_track_caller+0x6c/0x104 | kstrdup+0x48/0x84 | kstrdup_const+0x34/0x40 | __scmi_device_create.part.0+0x8c/0x408 | scmi_device_create+0x104/0x370 | scmi_chan_setup+0x2a0/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20 | | Freed by task 1: | kasan_save_stack+0x2c/0x54 | kasan_set_track+0x2c/0x40 | kasan_save_free_info+0x38/0x5c | __kasan_slab_free+0xe8/0x164 | __kmem_cache_free+0x11c/0x230 | kfree+0x70/0x130 | kfree_const+0x20/0x40 | __scmi_device_destroy+0x70/0x280 | scmi_device_destroy+0x94/0xd0 | scmi_chan_setup+0x524/0x750 | scmi_probe+0x7fc/0x1508 | platform_probe+0xc4/0x19c | really_probe+0x32c/0x99c | __driver_probe_device+0x15c/0x3c4 | driver_probe_device+0x5c/0x170 | __driver_attach+0x1c8/0x440 | bus_for_each_dev+0xf4/0x178 | driver_attach+0x3c/0x58 | bus_add_driver+0x234/0x4d4 | driver_register+0xf4/0x3c0 | __platform_driver_register+0x60/0x88 | scmi_driver_init+0xb0/0x104 | do_one_initcall+0xb4/0x664 | kernel_init_freeable+0x3c8/0x894 | kernel_init+0x24/0x1e8 | ret_from_fork+0x10/0x20
- CVE-2024-53079:
In the Linux kernel, the following vulnerability has been resolved: mm/thp: fix deferred split unqueue naming and locking Recent changes are putting more pressure on THP deferred split queues: under load revealing long-standing races, causing list_del corruptions, "Bad page state"s and worse (I keep BUGs in both of those, so usually don't get to see how badly they end up without). The relevant recent changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin, improved swap allocation, and underused THP splitting. Before fixing locking: rename misleading folio_undo_large_rmappable(), which does not undo large_rmappable, to folio_unqueue_deferred_split(), which is what it does. But that and its out-of-line __callee are mm internals of very limited usability: add comment and WARN_ON_ONCEs to check usage; and return a bool to say if a deferred split was unqueued, which can then be used in WARN_ON_ONCEs around safety checks (sparing callers the arcane conditionals in __folio_unqueue_deferred_split()). Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all of whose callers now call it beforehand (and if any forget then bad_page() will tell) - except for its caller put_pages_list(), which itself no longer has any callers (and will be deleted separately). Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0 without checking and unqueueing a THP folio from deferred split list; which is unfortunate, since the split_queue_lock depends on the memcg (when memcg is enabled); so swapout has been unqueueing such THPs later, when freeing the folio, using the pgdat's lock instead: potentially corrupting the memcg's list. __remove_mapping() has frozen refcount to 0 here, so no problem with calling folio_unqueue_deferred_split() before resetting memcg_data. That goes back to 5.4 commit 87eaceb3faa5 ("mm: thp: make deferred split shrinker memcg aware"): which included a check on swapcache before adding to deferred queue, but no check on deferred queue before adding THP to swapcache. That worked fine with the usual sequence of events in reclaim (though there were a couple of rare ways in which a THP on deferred queue could have been swapped out), but 6.12 commit dafff3f4c850 ("mm: split underused THPs") avoids splitting underused THPs in reclaim, which makes swapcache THPs on deferred queue commonplace. Keep the check on swapcache before adding to deferred queue? Yes: it is no longer essential, but preserves the existing behaviour, and is likely to be a worthwhile optimization (vmstat showed much more traffic on the queue under swapping load if the check was removed); update its comment. Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing folio->memcg_data without checking and unqueueing a THP folio from the deferred list, sometimes corrupting "from" memcg's list, like swapout. Refcount is non-zero here, so folio_unqueue_deferred_split() can only be used in a WARN_ON_ONCE to validate the fix, which must be done earlier: mem_cgroup_move_charge_pte_range() first try to split the THP (splitting of course unqueues), or skip it if that fails. Not ideal, but moving charge has been requested, and khugepaged should repair the THP later: nobody wants new custom unqueueing code just for this deprecated case. The 87eaceb3faa5 commit did have the code to move from one deferred list to another (but was not conscious of its unsafety while refcount non-0); but that was removed by 5.6 commit fac0516b5534 ("mm: thp: don't need care deferred split queue in memcg charge move path"), which argued that the existence of a PMD mapping guarantees that the THP cannot be on a deferred list. As above, false in rare cases, and now commonly false. Backport to 6.11 should be straightforward. Earlier backports must take care that other _deferred_list fixes and dependencies are included. There is not a strong case for backports, but they can fix cornercases.
- CVE-2024-53085:
In the Linux kernel, the following vulnerability has been resolved: tpm: Lock TPM chip in tpm_pm_suspend() first Setting TPM_CHIP_FLAG_SUSPENDED in the end of tpm_pm_suspend() can be racy according, as this leaves window for tpm_hwrng_read() to be called while the operation is in progress. The recent bug report gives also evidence of this behaviour. Aadress this by locking the TPM chip before checking any chip->flags both in tpm_pm_suspend() and tpm_hwrng_read(). Move TPM_CHIP_FLAG_SUSPENDED check inside tpm_get_random() so that it will be always checked only when the lock is reserved.
- CVE-2024-53089:
In the Linux kernel, the following vulnerability has been resolved: LoongArch: KVM: Mark hrtimer to expire in hard interrupt context Like commit 2c0d278f3293f ("KVM: LAPIC: Mark hrtimer to expire in hard interrupt context") and commit 9090825fa9974 ("KVM: arm/arm64: Let the timer expire in hardirq context on RT"), On PREEMPT_RT enabled kernels unmarked hrtimers are moved into soft interrupt expiry mode by default. Then the timers are canceled from an preempt-notifier which is invoked with disabled preemption which is not allowed on PREEMPT_RT. The timer callback is short so in could be invoked in hard-IRQ context. So let the timer expire on hard-IRQ context even on -RT. This fix a "scheduling while atomic" bug for PREEMPT_RT enabled kernels: BUG: scheduling while atomic: qemu-system-loo/1011/0x00000002 Modules linked in: amdgpu rfkill nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat ns CPU: 1 UID: 0 PID: 1011 Comm: qemu-system-loo Tainted: G W 6.12.0-rc2+ #1774 Tainted: [W]=WARN Hardware name: Loongson Loongson-3A5000-7A1000-1w-CRB/Loongson-LS3A5000-7A1000-1w-CRB, BIOS vUDK2018-LoongArch-V2.0.0-prebeta9 10/21/2022 Stack : ffffffffffffffff 0000000000000000 9000000004e3ea38 9000000116744000 90000001167475a0 0000000000000000 90000001167475a8 9000000005644830 90000000058dc000 90000000058dbff8 9000000116747420 0000000000000001 0000000000000001 6a613fc938313980 000000000790c000 90000001001c1140 00000000000003fe 0000000000000001 000000000000000d 0000000000000003 0000000000000030 00000000000003f3 000000000790c000 9000000116747830 90000000057ef000 0000000000000000 9000000005644830 0000000000000004 0000000000000000 90000000057f4b58 0000000000000001 9000000116747868 900000000451b600 9000000005644830 9000000003a13998 0000000010000020 00000000000000b0 0000000000000004 0000000000000000 0000000000071c1d ... Call Trace: [<9000000003a13998>] show_stack+0x38/0x180 [<9000000004e3ea34>] dump_stack_lvl+0x84/0xc0 [<9000000003a71708>] __schedule_bug+0x48/0x60 [<9000000004e45734>] __schedule+0x1114/0x1660 [<9000000004e46040>] schedule_rtlock+0x20/0x60 [<9000000004e4e330>] rtlock_slowlock_locked+0x3f0/0x10a0 [<9000000004e4f038>] rt_spin_lock+0x58/0x80 [<9000000003b02d68>] hrtimer_cancel_wait_running+0x68/0xc0 [<9000000003b02e30>] hrtimer_cancel+0x70/0x80 [<ffff80000235eb70>] kvm_restore_timer+0x50/0x1a0 [kvm] [<ffff8000023616c8>] kvm_arch_vcpu_load+0x68/0x2a0 [kvm] [<ffff80000234c2d4>] kvm_sched_in+0x34/0x60 [kvm] [<9000000003a749a0>] finish_task_switch.isra.0+0x140/0x2e0 [<9000000004e44a70>] __schedule+0x450/0x1660 [<9000000004e45cb0>] schedule+0x30/0x180 [<ffff800002354c70>] kvm_vcpu_block+0x70/0x120 [kvm] [<ffff800002354d80>] kvm_vcpu_halt+0x60/0x3e0 [kvm] [<ffff80000235b194>] kvm_handle_gspr+0x3f4/0x4e0 [kvm] [<ffff80000235f548>] kvm_handle_exit+0x1c8/0x260 [kvm]
- CVE-2024-53090:
In the Linux kernel, the following vulnerability has been resolved: afs: Fix lock recursion afs_wake_up_async_call() can incur lock recursion. The problem is that it is called from AF_RXRPC whilst holding the ->notify_lock, but it tries to take a ref on the afs_call struct in order to pass it to a work queue - but if the afs_call is already queued, we then have an extraneous ref that must be put... calling afs_put_call() may call back down into AF_RXRPC through rxrpc_kernel_shutdown_call(), however, which might try taking the ->notify_lock again. This case isn't very common, however, so defer it to a workqueue. The oops looks something like: BUG: spinlock recursion on CPU#0, krxrpcio/7001/1646 lock: 0xffff888141399b30, .magic: dead4ead, .owner: krxrpcio/7001/1646, .owner_cpu: 0 CPU: 0 UID: 0 PID: 1646 Comm: krxrpcio/7001 Not tainted 6.12.0-rc2-build3+ #4351 Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014 Call Trace: <TASK> dump_stack_lvl+0x47/0x70 do_raw_spin_lock+0x3c/0x90 rxrpc_kernel_shutdown_call+0x83/0xb0 afs_put_call+0xd7/0x180 rxrpc_notify_socket+0xa0/0x190 rxrpc_input_split_jumbo+0x198/0x1d0 rxrpc_input_data+0x14b/0x1e0 ? rxrpc_input_call_packet+0xc2/0x1f0 rxrpc_input_call_event+0xad/0x6b0 rxrpc_input_packet_on_conn+0x1e1/0x210 rxrpc_input_packet+0x3f2/0x4d0 rxrpc_io_thread+0x243/0x410 ? __pfx_rxrpc_io_thread+0x10/0x10 kthread+0xcf/0xe0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x24/0x40 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK>
- CVE-2024-53091:
In the Linux kernel, the following vulnerability has been resolved: bpf: Add sk_is_inet and IS_ICSK check in tls_sw_has_ctx_tx/rx As the introduction of the support for vsock and unix sockets in sockmap, tls_sw_has_ctx_tx/rx cannot presume the socket passed in must be IS_ICSK. vsock and af_unix sockets have vsock_sock and unix_sock instead of inet_connection_sock. For these sockets, tls_get_ctx may return an invalid pointer and cause page fault in function tls_sw_ctx_rx. BUG: unable to handle page fault for address: 0000000000040030 Workqueue: vsock-loopback vsock_loopback_work RIP: 0010:sk_psock_strp_data_ready+0x23/0x60 Call Trace: ? __die+0x81/0xc3 ? no_context+0x194/0x350 ? do_page_fault+0x30/0x110 ? async_page_fault+0x3e/0x50 ? sk_psock_strp_data_ready+0x23/0x60 virtio_transport_recv_pkt+0x750/0x800 ? update_load_avg+0x7e/0x620 vsock_loopback_work+0xd0/0x100 process_one_work+0x1a7/0x360 worker_thread+0x30/0x390 ? create_worker+0x1a0/0x1a0 kthread+0x112/0x130 ? __kthread_cancel_work+0x40/0x40 ret_from_fork+0x1f/0x40 v2: - Add IS_ICSK check v3: - Update the commits in Fixes
- CVE-2024-53094:
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Add sendpage_ok() check to disable MSG_SPLICE_PAGES While running ISER over SIW, the initiator machine encounters a warning from skb_splice_from_iter() indicating that a slab page is being used in send_page. To address this, it is better to add a sendpage_ok() check within the driver itself, and if it returns 0, then MSG_SPLICE_PAGES flag should be disabled before entering the network stack. A similar issue has been discussed for NVMe in this thread: https://lore.kernel.org/all/20240530142417.146696-1-ofir.gal@volumez.com/ WARNING: CPU: 0 PID: 5342 at net/core/skbuff.c:7140 skb_splice_from_iter+0x173/0x320 Call Trace: tcp_sendmsg_locked+0x368/0xe40 siw_tx_hdt+0x695/0xa40 [siw] siw_qp_sq_process+0x102/0xb00 [siw] siw_sq_resume+0x39/0x110 [siw] siw_run_sq+0x74/0x160 [siw] kthread+0xd2/0x100 ret_from_fork+0x34/0x40 ret_from_fork_asm+0x1a/0x30
- CVE-2024-53095:
In the Linux kernel, the following vulnerability has been resolved: smb: client: Fix use-after-free of network namespace. Recently, we got a customer report that CIFS triggers oops while reconnecting to a server. [0] The workload runs on Kubernetes, and some pods mount CIFS servers in non-root network namespaces. The problem rarely happened, but it was always while the pod was dying. The root cause is wrong reference counting for network namespace. CIFS uses kernel sockets, which do not hold refcnt of the netns that the socket belongs to. That means CIFS must ensure the socket is always freed before its netns; otherwise, use-after-free happens. The repro steps are roughly: 1. mount CIFS in a non-root netns 2. drop packets from the netns 3. destroy the netns 4. unmount CIFS We can reproduce the issue quickly with the script [1] below and see the splat [2] if CONFIG_NET_NS_REFCNT_TRACKER is enabled. When the socket is TCP, it is hard to guarantee the netns lifetime without holding refcnt due to async timers. Let's hold netns refcnt for each socket as done for SMC in commit 9744d2bf1976 ("smc: Fix use-after-free in tcp_write_timer_handler()."). Note that we need to move put_net() from cifs_put_tcp_session() to clean_demultiplex_info(); otherwise, __sock_create() still could touch a freed netns while cifsd tries to reconnect from cifs_demultiplex_thread(). Also, maybe_get_net() cannot be put just before __sock_create() because the code is not under RCU and there is a small chance that the same address happened to be reallocated to another netns. [0]: CIFS: VFS: \\XXXXXXXXXXX has not responded in 15 seconds. Reconnecting... CIFS: Serverclose failed 4 times, giving up Unable to handle kernel paging request at virtual address 14de99e461f84a07 Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004 CM = 0, WnR = 0 [14de99e461f84a07] address between user and kernel address ranges Internal error: Oops: 0000000096000004 [#1] SMP Modules linked in: cls_bpf sch_ingress nls_utf8 cifs cifs_arc4 cifs_md4 dns_resolver tcp_diag inet_diag veth xt_state xt_connmark nf_conntrack_netlink xt_nat xt_statistic xt_MASQUERADE xt_mark xt_addrtype ipt_REJECT nf_reject_ipv4 nft_chain_nat nf_nat xt_conntrack nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 xt_comment nft_compat nf_tables nfnetlink overlay nls_ascii nls_cp437 sunrpc vfat fat aes_ce_blk aes_ce_cipher ghash_ce sm4_ce_cipher sm4 sm3_ce sm3 sha3_ce sha512_ce sha512_arm64 sha1_ce ena button sch_fq_codel loop fuse configfs dmi_sysfs sha2_ce sha256_arm64 dm_mirror dm_region_hash dm_log dm_mod dax efivarfs CPU: 5 PID: 2690970 Comm: cifsd Not tainted 6.1.103-109.184.amzn2023.aarch64 #1 Hardware name: Amazon EC2 r7g.4xlarge/, BIOS 1.0 11/1/2018 pstate: 00400005 (nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : fib_rules_lookup+0x44/0x238 lr : __fib_lookup+0x64/0xbc sp : ffff8000265db790 x29: ffff8000265db790 x28: 0000000000000000 x27: 000000000000bd01 x26: 0000000000000000 x25: ffff000b4baf8000 x24: ffff00047b5e4580 x23: ffff8000265db7e0 x22: 0000000000000000 x21: ffff00047b5e4500 x20: ffff0010e3f694f8 x19: 14de99e461f849f7 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000000 x13: 0000000000000000 x12: 3f92800abd010002 x11: 0000000000000001 x10: ffff0010e3f69420 x9 : ffff800008a6f294 x8 : 0000000000000000 x7 : 0000000000000006 x6 : 0000000000000000 x5 : 0000000000000001 x4 : ffff001924354280 x3 : ffff8000265db7e0 x2 : 0000000000000000 x1 : ffff0010e3f694f8 x0 : ffff00047b5e4500 Call trace: fib_rules_lookup+0x44/0x238 __fib_lookup+0x64/0xbc ip_route_output_key_hash_rcu+0x2c4/0x398 ip_route_output_key_hash+0x60/0x8c tcp_v4_connect+0x290/0x488 __inet_stream_connect+0x108/0x3d0 inet_stream_connect+0x50/0x78 kernel_connect+0x6c/0xac generic_ip_conne ---truncated---
- CVE-2024-53108:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adjust VSDB parser for replay feature At some point, the IEEE ID identification for the replay check in the AMD EDID was added. However, this check causes the following out-of-bounds issues when using KASAN: [ 27.804016] BUG: KASAN: slab-out-of-bounds in amdgpu_dm_update_freesync_caps+0xefa/0x17a0 [amdgpu] [ 27.804788] Read of size 1 at addr ffff8881647fdb00 by task systemd-udevd/383 ... [ 27.821207] Memory state around the buggy address: [ 27.821215] ffff8881647fda00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821224] ffff8881647fda80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821234] >ffff8881647fdb00: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821243] ^ [ 27.821250] ffff8881647fdb80: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc [ 27.821259] ffff8881647fdc00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 27.821268] ================================================================== This is caused because the ID extraction happens outside of the range of the edid lenght. This commit addresses this issue by considering the amd_vsdb_block size. (cherry picked from commit b7e381b1ccd5e778e3d9c44c669ad38439a861d8)
- CVE-2024-53114:
In the Linux kernel, the following vulnerability has been resolved: x86/CPU/AMD: Clear virtualized VMLOAD/VMSAVE on Zen4 client A number of Zen4 client SoCs advertise the ability to use virtualized VMLOAD/VMSAVE, but using these instructions is reported to be a cause of a random host reboot. These instructions aren't intended to be advertised on Zen4 client so clear the capability.
- CVE-2024-53133:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Handle dml allocation failure to avoid crash [Why] In the case where a dml allocation fails for any reason, the current state's dml contexts would no longer be valid. Then subsequent calls dc_state_copy_internal would shallow copy invalid memory and if the new state was released, a double free would occur. [How] Reset dml pointers in new_state to NULL and avoid invalid pointer (cherry picked from commit bcafdc61529a48f6f06355d78eb41b3aeda5296c)
- CVE-2024-53134:
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx93-blk-ctrl: correct remove path The check condition should be 'i < bc->onecell_data.num_domains', not 'bc->onecell_data.num_domains' which will make the look never finish and cause kernel panic. Also disable runtime to address "imx93-blk-ctrl 4ac10000.system-controller: Unbalanced pm_runtime_enable!"
- CVE-2024-53147:
In the Linux kernel, the following vulnerability has been resolved: exfat: fix out-of-bounds access of directory entries In the case of the directory size is greater than or equal to the cluster size, if start_clu becomes an EOF cluster(an invalid cluster) due to file system corruption, then the directory entry where ei->hint_femp.eidx hint is outside the directory, resulting in an out-of-bounds access, which may cause further file system corruption. This commit adds a check for start_clu, if it is an invalid cluster, the file or directory will be treated as empty.
- CVE-2024-53166:
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix bfqq uaf in bfq_limit_depth() Set new allocated bfqq to bic or remove freed bfqq from bic are both protected by bfqd->lock, however bfq_limit_depth() is deferencing bfqq from bic without the lock, this can lead to UAF if the io_context is shared by multiple tasks. For example, test bfq with io_uring can trigger following UAF in v6.6: ================================================================== BUG: KASAN: slab-use-after-free in bfqq_group+0x15/0x50 Call Trace: <TASK> dump_stack_lvl+0x47/0x80 print_address_description.constprop.0+0x66/0x300 print_report+0x3e/0x70 kasan_report+0xb4/0xf0 bfqq_group+0x15/0x50 bfqq_request_over_limit+0x130/0x9a0 bfq_limit_depth+0x1b5/0x480 __blk_mq_alloc_requests+0x2b5/0xa00 blk_mq_get_new_requests+0x11d/0x1d0 blk_mq_submit_bio+0x286/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __block_write_full_folio+0x3d0/0x640 writepage_cb+0x3b/0xc0 write_cache_pages+0x254/0x6c0 write_cache_pages+0x254/0x6c0 do_writepages+0x192/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork_asm+0x1b/0x30 </TASK> Allocated by task 808602: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_slab_alloc+0x83/0x90 kmem_cache_alloc_node+0x1b1/0x6d0 bfq_get_queue+0x138/0xfa0 bfq_get_bfqq_handle_split+0xe3/0x2c0 bfq_init_rq+0x196/0xbb0 bfq_insert_request.isra.0+0xb5/0x480 bfq_insert_requests+0x156/0x180 blk_mq_insert_request+0x15d/0x440 blk_mq_submit_bio+0x8a4/0xb00 submit_bio_noacct_nocheck+0x331/0x400 __blkdev_direct_IO_async+0x2dd/0x330 blkdev_write_iter+0x39a/0x450 io_write+0x22a/0x840 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Freed by task 808589: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x27/0x40 __kasan_slab_free+0x126/0x1b0 kmem_cache_free+0x10c/0x750 bfq_put_queue+0x2dd/0x770 __bfq_insert_request.isra.0+0x155/0x7a0 bfq_insert_request.isra.0+0x122/0x480 bfq_insert_requests+0x156/0x180 blk_mq_dispatch_plug_list+0x528/0x7e0 blk_mq_flush_plug_list.part.0+0xe5/0x590 __blk_flush_plug+0x3b/0x90 blk_finish_plug+0x40/0x60 do_writepages+0x19d/0x310 filemap_fdatawrite_wbc+0x95/0xc0 __filemap_fdatawrite_range+0x99/0xd0 filemap_write_and_wait_range.part.0+0x4d/0xa0 blkdev_read_iter+0xef/0x1e0 io_read+0x1b6/0x8a0 io_issue_sqe+0x87/0x300 io_wq_submit_work+0xeb/0x390 io_worker_handle_work+0x24d/0x550 io_wq_worker+0x27f/0x6c0 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x1b/0x30 Fix the problem by protecting bic_to_bfqq() with bfqd->lock.
- CVE-2024-53168:
In the Linux kernel, the following vulnerability has been resolved: sunrpc: fix one UAF issue caused by sunrpc kernel tcp socket BUG: KASAN: slab-use-after-free in tcp_write_timer_handler+0x156/0x3e0 Read of size 1 at addr ffff888111f322cd by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc4-dirty #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 Call Trace: <IRQ> dump_stack_lvl+0x68/0xa0 print_address_description.constprop.0+0x2c/0x3d0 print_report+0xb4/0x270 kasan_report+0xbd/0xf0 tcp_write_timer_handler+0x156/0x3e0 tcp_write_timer+0x66/0x170 call_timer_fn+0xfb/0x1d0 __run_timers+0x3f8/0x480 run_timer_softirq+0x9b/0x100 handle_softirqs+0x153/0x390 __irq_exit_rcu+0x103/0x120 irq_exit_rcu+0xe/0x20 sysvec_apic_timer_interrupt+0x76/0x90 </IRQ> <TASK> asm_sysvec_apic_timer_interrupt+0x1a/0x20 RIP: 0010:default_idle+0xf/0x20 Code: 4c 01 c7 4c 29 c2 e9 72 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 66 90 0f 00 2d 33 f8 25 00 fb f4 <fa> c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 RSP: 0018:ffffffffa2007e28 EFLAGS: 00000242 RAX: 00000000000f3b31 RBX: 1ffffffff4400fc7 RCX: ffffffffa09c3196 RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff9f00590f RBP: 0000000000000000 R08: 0000000000000001 R09: ffffed102360835d R10: ffff88811b041aeb R11: 0000000000000001 R12: 0000000000000000 R13: ffffffffa202d7c0 R14: 0000000000000000 R15: 00000000000147d0 default_idle_call+0x6b/0xa0 cpuidle_idle_call+0x1af/0x1f0 do_idle+0xbc/0x130 cpu_startup_entry+0x33/0x40 rest_init+0x11f/0x210 start_kernel+0x39a/0x420 x86_64_start_reservations+0x18/0x30 x86_64_start_kernel+0x97/0xa0 common_startup_64+0x13e/0x141 </TASK> Allocated by task 595: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 __kasan_slab_alloc+0x87/0x90 kmem_cache_alloc_noprof+0x12b/0x3f0 copy_net_ns+0x94/0x380 create_new_namespaces+0x24c/0x500 unshare_nsproxy_namespaces+0x75/0xf0 ksys_unshare+0x24e/0x4f0 __x64_sys_unshare+0x1f/0x30 do_syscall_64+0x70/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 100: kasan_save_stack+0x24/0x50 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x54/0x70 kmem_cache_free+0x156/0x5d0 cleanup_net+0x5d3/0x670 process_one_work+0x776/0xa90 worker_thread+0x2e2/0x560 kthread+0x1a8/0x1f0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 Reproduction script: mkdir -p /mnt/nfsshare mkdir -p /mnt/nfs/netns_1 mkfs.ext4 /dev/sdb mount /dev/sdb /mnt/nfsshare systemctl restart nfs-server chmod 777 /mnt/nfsshare exportfs -i -o rw,no_root_squash *:/mnt/nfsshare ip netns add netns_1 ip link add name veth_1_peer type veth peer veth_1 ifconfig veth_1_peer 11.11.0.254 up ip link set veth_1 netns netns_1 ip netns exec netns_1 ifconfig veth_1 11.11.0.1 ip netns exec netns_1 /root/iptables -A OUTPUT -d 11.11.0.254 -p tcp \ --tcp-flags FIN FIN -j DROP (note: In my environment, a DESTROY_CLIENTID operation is always sent immediately, breaking the nfs tcp connection.) ip netns exec netns_1 timeout -s 9 300 mount -t nfs -o proto=tcp,vers=4.1 \ 11.11.0.254:/mnt/nfsshare /mnt/nfs/netns_1 ip netns del netns_1 The reason here is that the tcp socket in netns_1 (nfs side) has been shutdown and closed (done in xs_destroy), but the FIN message (with ack) is discarded, and the nfsd side keeps sending retransmission messages. As a result, when the tcp sock in netns_1 processes the received message, it sends the message (FIN message) in the sending queue, and the tcp timer is re-established. When the network namespace is deleted, the net structure accessed by tcp's timer handler function causes problems. To fix this problem, let's hold netns refcnt for the tcp kernel socket as done in other modules. This is an ugly hack which can easily be backported to earlier kernels. A proper fix which cleans up the interfaces will follow, but may not be so easy to backport.
- CVE-2024-53176:
In the Linux kernel, the following vulnerability has been resolved: smb: During unmount, ensure all cached dir instances drop their dentry The unmount process (cifs_kill_sb() calling close_all_cached_dirs()) can race with various cached directory operations, which ultimately results in dentries not being dropped and these kernel BUGs: BUG: Dentry ffff88814f37e358{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs] VFS: Busy inodes after unmount of cifs (cifs) ------------[ cut here ]------------ kernel BUG at fs/super.c:661! This happens when a cfid is in the process of being cleaned up when, and has been removed from the cfids->entries list, including: - Receiving a lease break from the server - Server reconnection triggers invalidate_all_cached_dirs(), which removes all the cfids from the list - The laundromat thread decides to expire an old cfid. To solve these problems, dropping the dentry is done in queued work done in a newly-added cfid_put_wq workqueue, and close_all_cached_dirs() flushes that workqueue after it drops all the dentries of which it's aware. This is a global workqueue (rather than scoped to a mount), but the queued work is minimal. The final cleanup work for cleaning up a cfid is performed via work queued in the serverclose_wq workqueue; this is done separate from dropping the dentries so that close_all_cached_dirs() doesn't block on any server operations. Both of these queued works expect to invoked with a cfid reference and a tcon reference to avoid those objects from being freed while the work is ongoing. While we're here, add proper locking to close_all_cached_dirs(), and locking around the freeing of cfid->dentry.
- CVE-2024-53177:
In the Linux kernel, the following vulnerability has been resolved: smb: prevent use-after-free due to open_cached_dir error paths If open_cached_dir() encounters an error parsing the lease from the server, the error handling may race with receiving a lease break, resulting in open_cached_dir() freeing the cfid while the queued work is pending. Update open_cached_dir() to drop refs rather than directly freeing the cfid. Have cached_dir_lease_break(), cfids_laundromat_worker(), and invalidate_all_cached_dirs() clear has_lease immediately while still holding cfids->cfid_list_lock, and then use this to also simplify the reference counting in cfids_laundromat_worker() and invalidate_all_cached_dirs(). Fixes this KASAN splat (which manually injects an error and lease break in open_cached_dir()): ================================================================== BUG: KASAN: slab-use-after-free in smb2_cached_lease_break+0x27/0xb0 Read of size 8 at addr ffff88811cc24c10 by task kworker/3:1/65 CPU: 3 UID: 0 PID: 65 Comm: kworker/3:1 Not tainted 6.12.0-rc6-g255cf264e6e5-dirty #87 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Workqueue: cifsiod smb2_cached_lease_break Call Trace: <TASK> dump_stack_lvl+0x77/0xb0 print_report+0xce/0x660 kasan_report+0xd3/0x110 smb2_cached_lease_break+0x27/0xb0 process_one_work+0x50a/0xc50 worker_thread+0x2ba/0x530 kthread+0x17c/0x1c0 ret_from_fork+0x34/0x60 ret_from_fork_asm+0x1a/0x30 </TASK> Allocated by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 __kasan_kmalloc+0xaa/0xb0 open_cached_dir+0xa7d/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2464: kasan_save_stack+0x33/0x60 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x51/0x70 kfree+0x174/0x520 open_cached_dir+0x97f/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Last potentially related work creation: kasan_save_stack+0x33/0x60 __kasan_record_aux_stack+0xad/0xc0 insert_work+0x32/0x100 __queue_work+0x5c9/0x870 queue_work_on+0x82/0x90 open_cached_dir+0x1369/0x1fb0 smb2_query_path_info+0x43c/0x6e0 cifs_get_fattr+0x346/0xf10 cifs_get_inode_info+0x157/0x210 cifs_revalidate_dentry_attr+0x2d1/0x460 cifs_getattr+0x173/0x470 vfs_statx_path+0x10f/0x160 vfs_statx+0xe9/0x150 vfs_fstatat+0x5e/0xc0 __do_sys_newfstatat+0x91/0xf0 do_syscall_64+0x95/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e The buggy address belongs to the object at ffff88811cc24c00 which belongs to the cache kmalloc-1k of size 1024 The buggy address is located 16 bytes inside of freed 1024-byte region [ffff88811cc24c00, ffff88811cc25000)
- CVE-2024-53178:
In the Linux kernel, the following vulnerability has been resolved: smb: Don't leak cfid when reconnect races with open_cached_dir open_cached_dir() may either race with the tcon reconnection even before compound_send_recv() or directly trigger a reconnection via SMB2_open_init() or SMB_query_info_init(). The reconnection process invokes invalidate_all_cached_dirs() via cifs_mark_open_files_invalid(), which removes all cfids from the cfids->entries list but doesn't drop a ref if has_lease isn't true. This results in the currently-being-constructed cfid not being on the list, but still having a refcount of 2. It leaks if returned from open_cached_dir(). Fix this by setting cfid->has_lease when the ref is actually taken; the cfid will not be used by other threads until it has a valid time. Addresses these kmemleaks: unreferenced object 0xffff8881090c4000 (size 1024): comm "bash", pid 1860, jiffies 4295126592 hex dump (first 32 bytes): 00 01 00 00 00 00 ad de 22 01 00 00 00 00 ad de ........"....... 00 ca 45 22 81 88 ff ff f8 dc 4f 04 81 88 ff ff ..E"......O..... backtrace (crc 6f58c20f): [<ffffffff8b895a1e>] __kmalloc_cache_noprof+0x2be/0x350 [<ffffffff8bda06e3>] open_cached_dir+0x993/0x1fb0 [<ffffffff8bdaa750>] cifs_readdir+0x15a0/0x1d50 [<ffffffff8b9a853f>] iterate_dir+0x28f/0x4b0 [<ffffffff8b9a9aed>] __x64_sys_getdents64+0xfd/0x200 [<ffffffff8cf6da05>] do_syscall_64+0x95/0x1a0 [<ffffffff8d00012f>] entry_SYSCALL_64_after_hwframe+0x76/0x7e unreferenced object 0xffff8881044fdcf8 (size 8): comm "bash", pid 1860, jiffies 4295126592 hex dump (first 8 bytes): 00 cc cc cc cc cc cc cc ........ backtrace (crc 10c106a9): [<ffffffff8b89a3d3>] __kmalloc_node_track_caller_noprof+0x363/0x480 [<ffffffff8b7d7256>] kstrdup+0x36/0x60 [<ffffffff8bda0700>] open_cached_dir+0x9b0/0x1fb0 [<ffffffff8bdaa750>] cifs_readdir+0x15a0/0x1d50 [<ffffffff8b9a853f>] iterate_dir+0x28f/0x4b0 [<ffffffff8b9a9aed>] __x64_sys_getdents64+0xfd/0x200 [<ffffffff8cf6da05>] do_syscall_64+0x95/0x1a0 [<ffffffff8d00012f>] entry_SYSCALL_64_after_hwframe+0x76/0x7e And addresses these BUG splats when unmounting the SMB filesystem: BUG: Dentry ffff888140590ba0{i=1000000000080,n=/} still in use (2) [unmount of cifs cifs] WARNING: CPU: 3 PID: 3433 at fs/dcache.c:1536 umount_check+0xd0/0x100 Modules linked in: CPU: 3 UID: 0 PID: 3433 Comm: bash Not tainted 6.12.0-rc4-g850925a8133c-dirty #49 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 RIP: 0010:umount_check+0xd0/0x100 Code: 8d 7c 24 40 e8 31 5a f4 ff 49 8b 54 24 40 41 56 49 89 e9 45 89 e8 48 89 d9 41 57 48 89 de 48 c7 c7 80 e7 db ac e8 f0 72 9a ff <0f> 0b 58 31 c0 5a 5b 5d 41 5c 41 5d 41 5e 41 5f e9 2b e5 5d 01 41 RSP: 0018:ffff88811cc27978 EFLAGS: 00010286 RAX: 0000000000000000 RBX: ffff888140590ba0 RCX: ffffffffaaf20bae RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff8881f6fb6f40 RBP: ffff8881462ec000 R08: 0000000000000001 R09: ffffed1023984ee3 R10: ffff88811cc2771f R11: 00000000016cfcc0 R12: ffff888134383e08 R13: 0000000000000002 R14: ffff8881462ec668 R15: ffffffffaceab4c0 FS: 00007f23bfa98740(0000) GS:ffff8881f6f80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000556de4a6f808 CR3: 0000000123c80000 CR4: 0000000000350ef0 Call Trace: <TASK> d_walk+0x6a/0x530 shrink_dcache_for_umount+0x6a/0x200 generic_shutdown_super+0x52/0x2a0 kill_anon_super+0x22/0x40 cifs_kill_sb+0x159/0x1e0 deactivate_locked_super+0x66/0xe0 cleanup_mnt+0x140/0x210 task_work_run+0xfb/0x170 syscall_exit_to_user_mode+0x29f/0x2b0 do_syscall_64+0xa1/0x1a0 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f23bfb93ae7 Code: ff ff ff ff c3 66 0f 1f 44 00 00 48 8b 0d 11 93 0d 00 f7 d8 64 89 01 b8 ff ff ff ff eb bf 0f 1f 44 00 00 b8 50 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d e9 92 0d 00 f7 d8 64 89 ---truncated---
- CVE-2024-53179:
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free of signing key Customers have reported use-after-free in @ses->auth_key.response with SMB2.1 + sign mounts which occurs due to following race: task A task B cifs_mount() dfs_mount_share() get_session() cifs_mount_get_session() cifs_send_recv() cifs_get_smb_ses() compound_send_recv() cifs_setup_session() smb2_setup_request() kfree_sensitive() smb2_calc_signature() crypto_shash_setkey() *UAF* Fix this by ensuring that we have a valid @ses->auth_key.response by checking whether @ses->ses_status is SES_GOOD or SES_EXITING with @ses->ses_lock held. After commit 24a9799aa8ef ("smb: client: fix UAF in smb2_reconnect_server()"), we made sure to call ->logoff() only when @ses was known to be good (e.g. valid ->auth_key.response), so it's safe to access signing key when @ses->ses_status == SES_EXITING.
- CVE-2024-53187:
In the Linux kernel, the following vulnerability has been resolved: io_uring: check for overflows in io_pin_pages WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144 CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0 Call Trace: <TASK> __io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183 io_rings_map io_uring/io_uring.c:2611 [inline] io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470 io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692 io_uring_setup io_uring/io_uring.c:3781 [inline] ... </TASK> io_pin_pages()'s uaddr parameter came directly from the user and can be garbage. Don't just add size to it as it can overflow.
- CVE-2024-53195:
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: Get rid of userspace_irqchip_in_use Improper use of userspace_irqchip_in_use led to syzbot hitting the following WARN_ON() in kvm_timer_update_irq(): WARNING: CPU: 0 PID: 3281 at arch/arm64/kvm/arch_timer.c:459 kvm_timer_update_irq+0x21c/0x394 Call trace: kvm_timer_update_irq+0x21c/0x394 arch/arm64/kvm/arch_timer.c:459 kvm_timer_vcpu_reset+0x158/0x684 arch/arm64/kvm/arch_timer.c:968 kvm_reset_vcpu+0x3b4/0x560 arch/arm64/kvm/reset.c:264 kvm_vcpu_set_target arch/arm64/kvm/arm.c:1553 [inline] kvm_arch_vcpu_ioctl_vcpu_init arch/arm64/kvm/arm.c:1573 [inline] kvm_arch_vcpu_ioctl+0x112c/0x1b3c arch/arm64/kvm/arm.c:1695 kvm_vcpu_ioctl+0x4ec/0xf74 virt/kvm/kvm_main.c:4658 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __arm64_sys_ioctl+0x108/0x184 fs/ioctl.c:893 __invoke_syscall arch/arm64/kernel/syscall.c:35 [inline] invoke_syscall+0x78/0x1b8 arch/arm64/kernel/syscall.c:49 el0_svc_common+0xe8/0x1b0 arch/arm64/kernel/syscall.c:132 do_el0_svc+0x40/0x50 arch/arm64/kernel/syscall.c:151 el0_svc+0x54/0x14c arch/arm64/kernel/entry-common.c:712 el0t_64_sync_handler+0x84/0xfc arch/arm64/kernel/entry-common.c:730 el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598 The following sequence led to the scenario: - Userspace creates a VM and a vCPU. - The vCPU is initialized with KVM_ARM_VCPU_PMU_V3 during KVM_ARM_VCPU_INIT. - Without any other setup, such as vGIC or vPMU, userspace issues KVM_RUN on the vCPU. Since the vPMU is requested, but not setup, kvm_arm_pmu_v3_enable() fails in kvm_arch_vcpu_run_pid_change(). As a result, KVM_RUN returns after enabling the timer, but before incrementing 'userspace_irqchip_in_use': kvm_arch_vcpu_run_pid_change() ret = kvm_arm_pmu_v3_enable() if (!vcpu->arch.pmu.created) return -EINVAL; if (ret) return ret; [...] if (!irqchip_in_kernel(kvm)) static_branch_inc(&userspace_irqchip_in_use); - Userspace ignores the error and issues KVM_ARM_VCPU_INIT again. Since the timer is already enabled, control moves through the following flow, ultimately hitting the WARN_ON(): kvm_timer_vcpu_reset() if (timer->enabled) kvm_timer_update_irq() if (!userspace_irqchip()) ret = kvm_vgic_inject_irq() ret = vgic_lazy_init() if (unlikely(!vgic_initialized(kvm))) if (kvm->arch.vgic.vgic_model != KVM_DEV_TYPE_ARM_VGIC_V2) return -EBUSY; WARN_ON(ret); Theoretically, since userspace_irqchip_in_use's functionality can be simply replaced by '!irqchip_in_kernel()', get rid of the static key to avoid the mismanagement, which also helps with the syzbot issue.
- CVE-2024-53203:
In the Linux kernel, the following vulnerability has been resolved: usb: typec: fix potential array underflow in ucsi_ccg_sync_control() The "command" variable can be controlled by the user via debugfs. The worry is that if con_index is zero then "&uc->ucsi->connector[con_index - 1]" would be an array underflow.
- CVE-2024-53209:
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix receive ring space parameters when XDP is active The MTU setting at the time an XDP multi-buffer is attached determines whether the aggregation ring will be used and the rx_skb_func handler. This is done in bnxt_set_rx_skb_mode(). If the MTU is later changed, the aggregation ring setting may need to be changed and it may become out-of-sync with the settings initially done in bnxt_set_rx_skb_mode(). This may result in random memory corruption and crashes as the HW may DMA data larger than the allocated buffer size, such as: BUG: kernel NULL pointer dereference, address: 00000000000003c0 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 17 PID: 0 Comm: swapper/17 Kdump: loaded Tainted: G S OE 6.1.0-226bf9805506 #1 Hardware name: Wiwynn Delta Lake PVT BZA.02601.0150/Delta Lake-Class1, BIOS F0E_3A12 08/26/2021 RIP: 0010:bnxt_rx_pkt+0xe97/0x1ae0 [bnxt_en] Code: 8b 95 70 ff ff ff 4c 8b 9d 48 ff ff ff 66 41 89 87 b4 00 00 00 e9 0b f7 ff ff 0f b7 43 0a 49 8b 95 a8 04 00 00 25 ff 0f 00 00 <0f> b7 14 42 48 c1 e2 06 49 03 95 a0 04 00 00 0f b6 42 33f RSP: 0018:ffffa19f40cc0d18 EFLAGS: 00010202 RAX: 00000000000001e0 RBX: ffff8e2c805c6100 RCX: 00000000000007ff RDX: 0000000000000000 RSI: ffff8e2c271ab990 RDI: ffff8e2c84f12380 RBP: ffffa19f40cc0e48 R08: 000000000001000d R09: 974ea2fcddfa4cbf R10: 0000000000000000 R11: ffffa19f40cc0ff8 R12: ffff8e2c94b58980 R13: ffff8e2c952d6600 R14: 0000000000000016 R15: ffff8e2c271ab990 FS: 0000000000000000(0000) GS:ffff8e3b3f840000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000000003c0 CR3: 0000000e8580a004 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> __bnxt_poll_work+0x1c2/0x3e0 [bnxt_en] To address the issue, we now call bnxt_set_rx_skb_mode() within bnxt_change_mtu() to properly set the AGG rings configuration and update rx_skb_func based on the new MTU value. Additionally, BNXT_FLAG_NO_AGG_RINGS is cleared at the beginning of bnxt_set_rx_skb_mode() to make sure it gets set or cleared based on the current MTU.
- CVE-2024-53216:
In the Linux kernel, the following vulnerability has been resolved: nfsd: release svc_expkey/svc_export with rcu_work The last reference for `cache_head` can be reduced to zero in `c_show` and `e_show`(using `rcu_read_lock` and `rcu_read_unlock`). Consequently, `svc_export_put` and `expkey_put` will be invoked, leading to two issues: 1. The `svc_export_put` will directly free ex_uuid. However, `e_show`/`c_show` will access `ex_uuid` after `cache_put`, which can trigger a use-after-free issue, shown below. ================================================================== BUG: KASAN: slab-use-after-free in svc_export_show+0x362/0x430 [nfsd] Read of size 1 at addr ff11000010fdc120 by task cat/870 CPU: 1 UID: 0 PID: 870 Comm: cat Not tainted 6.12.0-rc3+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x53/0x70 print_address_description.constprop.0+0x2c/0x3a0 print_report+0xb9/0x280 kasan_report+0xae/0xe0 svc_export_show+0x362/0x430 [nfsd] c_show+0x161/0x390 [sunrpc] seq_read_iter+0x589/0x770 seq_read+0x1e5/0x270 proc_reg_read+0xe1/0x140 vfs_read+0x125/0x530 ksys_read+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 830: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 __kasan_kmalloc+0x8f/0xa0 __kmalloc_node_track_caller_noprof+0x1bc/0x400 kmemdup_noprof+0x22/0x50 svc_export_parse+0x8a9/0xb80 [nfsd] cache_do_downcall+0x71/0xa0 [sunrpc] cache_write_procfs+0x8e/0xd0 [sunrpc] proc_reg_write+0xe1/0x140 vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 868: kasan_save_stack+0x20/0x40 kasan_save_track+0x14/0x30 kasan_save_free_info+0x3b/0x60 __kasan_slab_free+0x37/0x50 kfree+0xf3/0x3e0 svc_export_put+0x87/0xb0 [nfsd] cache_purge+0x17f/0x1f0 [sunrpc] nfsd_destroy_serv+0x226/0x2d0 [nfsd] nfsd_svc+0x125/0x1e0 [nfsd] write_threads+0x16a/0x2a0 [nfsd] nfsctl_transaction_write+0x74/0xa0 [nfsd] vfs_write+0x1a5/0x6d0 ksys_write+0xc1/0x160 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e 2. We cannot sleep while using `rcu_read_lock`/`rcu_read_unlock`. However, `svc_export_put`/`expkey_put` will call path_put, which subsequently triggers a sleeping operation due to the following `dput`. ============================= WARNING: suspicious RCU usage 5.10.0-dirty #141 Not tainted ----------------------------- ... Call Trace: dump_stack+0x9a/0xd0 ___might_sleep+0x231/0x240 dput+0x39/0x600 path_put+0x1b/0x30 svc_export_put+0x17/0x80 e_show+0x1c9/0x200 seq_read_iter+0x63f/0x7c0 seq_read+0x226/0x2d0 vfs_read+0x113/0x2c0 ksys_read+0xc9/0x170 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Fix these issues by using `rcu_work` to help release `svc_expkey`/`svc_export`. This approach allows for an asynchronous context to invoke `path_put` and also facilitates the freeing of `uuid/exp/key` after an RCU grace period.
- CVE-2024-53218:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix race in concurrent f2fs_stop_gc_thread In my test case, concurrent calls to f2fs shutdown report the following stack trace: Oops: general protection fault, probably for non-canonical address 0xc6cfff63bb5513fc: 0000 [#1] PREEMPT SMP PTI CPU: 0 UID: 0 PID: 678 Comm: f2fs_rep_shutdo Not tainted 6.12.0-rc5-next-20241029-g6fb2fa9805c5-dirty #85 Call Trace: <TASK> ? show_regs+0x8b/0xa0 ? __die_body+0x26/0xa0 ? die_addr+0x54/0x90 ? exc_general_protection+0x24b/0x5c0 ? asm_exc_general_protection+0x26/0x30 ? kthread_stop+0x46/0x390 f2fs_stop_gc_thread+0x6c/0x110 f2fs_do_shutdown+0x309/0x3a0 f2fs_ioc_shutdown+0x150/0x1c0 __f2fs_ioctl+0xffd/0x2ac0 f2fs_ioctl+0x76/0xe0 vfs_ioctl+0x23/0x60 __x64_sys_ioctl+0xce/0xf0 x64_sys_call+0x2b1b/0x4540 do_syscall_64+0xa7/0x240 entry_SYSCALL_64_after_hwframe+0x76/0x7e The root cause is a race condition in f2fs_stop_gc_thread() called from different f2fs shutdown paths: [CPU0] [CPU1] ---------------------- ----------------------- f2fs_stop_gc_thread f2fs_stop_gc_thread gc_th = sbi->gc_thread gc_th = sbi->gc_thread kfree(gc_th) sbi->gc_thread = NULL < gc_th != NULL > kthread_stop(gc_th->f2fs_gc_task) //UAF The commit c7f114d864ac ("f2fs: fix to avoid use-after-free in f2fs_stop_gc_thread()") attempted to fix this issue by using a read semaphore to prevent races between shutdown and remount threads, but it fails to prevent all race conditions. Fix it by converting to write lock of s_umount in f2fs_do_shutdown().
- CVE-2024-53219:
In the Linux kernel, the following vulnerability has been resolved: virtiofs: use pages instead of pointer for kernel direct IO When trying to insert a 10MB kernel module kept in a virtio-fs with cache disabled, the following warning was reported: ------------[ cut here ]------------ WARNING: CPU: 1 PID: 404 at mm/page_alloc.c:4551 ...... Modules linked in: CPU: 1 PID: 404 Comm: insmod Not tainted 6.9.0-rc5+ #123 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:__alloc_pages+0x2bf/0x380 ...... Call Trace: <TASK> ? __warn+0x8e/0x150 ? __alloc_pages+0x2bf/0x380 __kmalloc_large_node+0x86/0x160 __kmalloc+0x33c/0x480 virtio_fs_enqueue_req+0x240/0x6d0 virtio_fs_wake_pending_and_unlock+0x7f/0x190 queue_request_and_unlock+0x55/0x60 fuse_simple_request+0x152/0x2b0 fuse_direct_io+0x5d2/0x8c0 fuse_file_read_iter+0x121/0x160 __kernel_read+0x151/0x2d0 kernel_read+0x45/0x50 kernel_read_file+0x1a9/0x2a0 init_module_from_file+0x6a/0xe0 idempotent_init_module+0x175/0x230 __x64_sys_finit_module+0x5d/0xb0 x64_sys_call+0x1c3/0x9e0 do_syscall_64+0x3d/0xc0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 ...... </TASK> ---[ end trace 0000000000000000 ]--- The warning is triggered as follows: 1) syscall finit_module() handles the module insertion and it invokes kernel_read_file() to read the content of the module first. 2) kernel_read_file() allocates a 10MB buffer by using vmalloc() and passes it to kernel_read(). kernel_read() constructs a kvec iter by using iov_iter_kvec() and passes it to fuse_file_read_iter(). 3) virtio-fs disables the cache, so fuse_file_read_iter() invokes fuse_direct_io(). As for now, the maximal read size for kvec iter is only limited by fc->max_read. For virtio-fs, max_read is UINT_MAX, so fuse_direct_io() doesn't split the 10MB buffer. It saves the address and the size of the 10MB-sized buffer in out_args[0] of a fuse request and passes the fuse request to virtio_fs_wake_pending_and_unlock(). 4) virtio_fs_wake_pending_and_unlock() uses virtio_fs_enqueue_req() to queue the request. Because virtiofs need DMA-able address, so virtio_fs_enqueue_req() uses kmalloc() to allocate a bounce buffer for all fuse args, copies these args into the bounce buffer and passed the physical address of the bounce buffer to virtiofsd. The total length of these fuse args for the passed fuse request is about 10MB, so copy_args_to_argbuf() invokes kmalloc() with a 10MB size parameter and it triggers the warning in __alloc_pages(): if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) return NULL; 5) virtio_fs_enqueue_req() will retry the memory allocation in a kworker, but it won't help, because kmalloc() will always return NULL due to the abnormal size and finit_module() will hang forever. A feasible solution is to limit the value of max_read for virtio-fs, so the length passed to kmalloc() will be limited. However it will affect the maximal read size for normal read. And for virtio-fs write initiated from kernel, it has the similar problem but now there is no way to limit fc->max_write in kernel. So instead of limiting both the values of max_read and max_write in kernel, introducing use_pages_for_kvec_io in fuse_conn and setting it as true in virtiofs. When use_pages_for_kvec_io is enabled, fuse will use pages instead of pointer to pass the KVEC_IO data. After switching to pages for KVEC_IO data, these pages will be used for DMA through virtio-fs. If these pages are backed by vmalloc(), {flush|invalidate}_kernel_vmap_range() are necessary to flush or invalidate the cache before the DMA operation. So add two new fields in fuse_args_pages to record the base address of vmalloc area and the condition indicating whether invalidation is needed. Perform the flush in fuse_get_user_pages() for write operations and the invalidation in fuse_release_user_pages() for read operations. It may seem necessary to introduce another fie ---truncated---
- CVE-2024-53221:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix null-ptr-deref in f2fs_submit_page_bio() There's issue as follows when concurrently installing the f2fs.ko module and mounting the f2fs file system: KASAN: null-ptr-deref in range [0x0000000000000020-0x0000000000000027] RIP: 0010:__bio_alloc+0x2fb/0x6c0 [f2fs] Call Trace: <TASK> f2fs_submit_page_bio+0x126/0x8b0 [f2fs] __get_meta_page+0x1d4/0x920 [f2fs] get_checkpoint_version.constprop.0+0x2b/0x3c0 [f2fs] validate_checkpoint+0xac/0x290 [f2fs] f2fs_get_valid_checkpoint+0x207/0x950 [f2fs] f2fs_fill_super+0x1007/0x39b0 [f2fs] mount_bdev+0x183/0x250 legacy_get_tree+0xf4/0x1e0 vfs_get_tree+0x88/0x340 do_new_mount+0x283/0x5e0 path_mount+0x2b2/0x15b0 __x64_sys_mount+0x1fe/0x270 do_syscall_64+0x5f/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Above issue happens as the biset of the f2fs file system is not initialized before register "f2fs_fs_type". To address above issue just register "f2fs_fs_type" at the last in init_f2fs_fs(). Ensure that all f2fs file system resources are initialized.
- CVE-2024-53224:
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Move events notifier registration to be after device registration Move pkey change work initialization and cleanup from device resources stage to notifier stage, since this is the stage which handles this work events. Fix a race between the device deregistration and pkey change work by moving MLX5_IB_STAGE_DEVICE_NOTIFIER to be after MLX5_IB_STAGE_IB_REG in order to ensure that the notifier is deregistered before the device during cleanup. Which ensures there are no works that are being executed after the device has already unregistered which can cause the panic below. BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] PREEMPT SMP PTI CPU: 1 PID: 630071 Comm: kworker/1:2 Kdump: loaded Tainted: G W OE --------- --- 5.14.0-162.6.1.el9_1.x86_64 #1 Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090008 02/27/2023 Workqueue: events pkey_change_handler [mlx5_ib] RIP: 0010:setup_qp+0x38/0x1f0 [mlx5_ib] Code: ee 41 54 45 31 e4 55 89 f5 53 48 89 fb 48 83 ec 20 8b 77 08 65 48 8b 04 25 28 00 00 00 48 89 44 24 18 48 8b 07 48 8d 4c 24 16 <4c> 8b 38 49 8b 87 80 0b 00 00 4c 89 ff 48 8b 80 08 05 00 00 8b 40 RSP: 0018:ffffbcc54068be20 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff954054494128 RCX: ffffbcc54068be36 RDX: ffff954004934000 RSI: 0000000000000001 RDI: ffff954054494128 RBP: 0000000000000023 R08: ffff954001be2c20 R09: 0000000000000001 R10: ffff954001be2c20 R11: ffff9540260133c0 R12: 0000000000000000 R13: 0000000000000023 R14: 0000000000000000 R15: ffff9540ffcb0905 FS: 0000000000000000(0000) GS:ffff9540ffc80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000010625c001 CR4: 00000000003706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: mlx5_ib_gsi_pkey_change+0x20/0x40 [mlx5_ib] process_one_work+0x1e8/0x3c0 worker_thread+0x50/0x3b0 ? rescuer_thread+0x380/0x380 kthread+0x149/0x170 ? set_kthread_struct+0x50/0x50 ret_from_fork+0x22/0x30 Modules linked in: rdma_ucm(OE) rdma_cm(OE) iw_cm(OE) ib_ipoib(OE) ib_cm(OE) ib_umad(OE) mlx5_ib(OE) mlx5_fwctl(OE) fwctl(OE) ib_uverbs(OE) mlx5_core(OE) mlxdevm(OE) ib_core(OE) mlx_compat(OE) psample mlxfw(OE) tls knem(OE) netconsole nfsv3 nfs_acl nfs lockd grace fscache netfs qrtr rfkill sunrpc intel_rapl_msr intel_rapl_common rapl hv_balloon hv_utils i2c_piix4 pcspkr joydev fuse ext4 mbcache jbd2 sr_mod sd_mod cdrom t10_pi sg ata_generic pci_hyperv pci_hyperv_intf hyperv_drm drm_shmem_helper drm_kms_helper hv_storvsc syscopyarea hv_netvsc sysfillrect sysimgblt hid_hyperv fb_sys_fops scsi_transport_fc hyperv_keyboard drm ata_piix crct10dif_pclmul crc32_pclmul crc32c_intel libata ghash_clmulni_intel hv_vmbus serio_raw [last unloaded: ib_core] CR2: 0000000000000000 ---[ end trace f6f8be4eae12f7bc ]---
- CVE-2024-53687:
In the Linux kernel, the following vulnerability has been resolved: riscv: Fix IPIs usage in kfence_protect_page() flush_tlb_kernel_range() may use IPIs to flush the TLBs of all the cores, which triggers the following warning when the irqs are disabled: [ 3.455330] WARNING: CPU: 1 PID: 0 at kernel/smp.c:815 smp_call_function_many_cond+0x452/0x520 [ 3.456647] Modules linked in: [ 3.457218] CPU: 1 UID: 0 PID: 0 Comm: swapper/1 Not tainted 6.12.0-rc7-00010-g91d3de7240b8 #1 [ 3.457416] Hardware name: QEMU QEMU Virtual Machine, BIOS [ 3.457633] epc : smp_call_function_many_cond+0x452/0x520 [ 3.457736] ra : on_each_cpu_cond_mask+0x1e/0x30 [ 3.457786] epc : ffffffff800b669a ra : ffffffff800b67c2 sp : ff2000000000bb50 [ 3.457824] gp : ffffffff815212b8 tp : ff6000008014f080 t0 : 000000000000003f [ 3.457859] t1 : ffffffff815221e0 t2 : 000000000000000f s0 : ff2000000000bc10 [ 3.457920] s1 : 0000000000000040 a0 : ffffffff815221e0 a1 : 0000000000000001 [ 3.457953] a2 : 0000000000010000 a3 : 0000000000000003 a4 : 0000000000000000 [ 3.458006] a5 : 0000000000000000 a6 : ffffffffffffffff a7 : 0000000000000000 [ 3.458042] s2 : ffffffff815223be s3 : 00fffffffffff000 s4 : ff600001ffe38fc0 [ 3.458076] s5 : ff600001ff950d00 s6 : 0000000200000120 s7 : 0000000000000001 [ 3.458109] s8 : 0000000000000001 s9 : ff60000080841ef0 s10: 0000000000000001 [ 3.458141] s11: ffffffff81524812 t3 : 0000000000000001 t4 : ff60000080092bc0 [ 3.458172] t5 : 0000000000000000 t6 : ff200000000236d0 [ 3.458203] status: 0000000200000100 badaddr: ffffffff800b669a cause: 0000000000000003 [ 3.458373] [<ffffffff800b669a>] smp_call_function_many_cond+0x452/0x520 [ 3.458593] [<ffffffff800b67c2>] on_each_cpu_cond_mask+0x1e/0x30 [ 3.458625] [<ffffffff8000e4ca>] __flush_tlb_range+0x118/0x1ca [ 3.458656] [<ffffffff8000e6b2>] flush_tlb_kernel_range+0x1e/0x26 [ 3.458683] [<ffffffff801ea56a>] kfence_protect+0xc0/0xce [ 3.458717] [<ffffffff801e9456>] kfence_guarded_free+0xc6/0x1c0 [ 3.458742] [<ffffffff801e9d6c>] __kfence_free+0x62/0xc6 [ 3.458764] [<ffffffff801c57d8>] kfree+0x106/0x32c [ 3.458786] [<ffffffff80588cf2>] detach_buf_split+0x188/0x1a8 [ 3.458816] [<ffffffff8058708c>] virtqueue_get_buf_ctx+0xb6/0x1f6 [ 3.458839] [<ffffffff805871da>] virtqueue_get_buf+0xe/0x16 [ 3.458880] [<ffffffff80613d6a>] virtblk_done+0x5c/0xe2 [ 3.458908] [<ffffffff8058766e>] vring_interrupt+0x6a/0x74 [ 3.458930] [<ffffffff800747d8>] __handle_irq_event_percpu+0x7c/0xe2 [ 3.458956] [<ffffffff800748f0>] handle_irq_event+0x3c/0x86 [ 3.458978] [<ffffffff800786cc>] handle_simple_irq+0x9e/0xbe [ 3.459004] [<ffffffff80073934>] generic_handle_domain_irq+0x1c/0x2a [ 3.459027] [<ffffffff804bf87c>] imsic_handle_irq+0xba/0x120 [ 3.459056] [<ffffffff80073934>] generic_handle_domain_irq+0x1c/0x2a [ 3.459080] [<ffffffff804bdb76>] riscv_intc_aia_irq+0x24/0x34 [ 3.459103] [<ffffffff809d0452>] handle_riscv_irq+0x2e/0x4c [ 3.459133] [<ffffffff809d923e>] call_on_irq_stack+0x32/0x40 So only flush the local TLB and let the lazy kfence page fault handling deal with the faults which could happen when a core has an old protected pte version cached in its TLB. That leads to potential inaccuracies which can be tolerated when using kfence.
- CVE-2024-54456:
In the Linux kernel, the following vulnerability has been resolved: NFS: Fix potential buffer overflowin nfs_sysfs_link_rpc_client() name is char[64] where the size of clnt->cl_program->name remains unknown. Invoking strcat() directly will also lead to potential buffer overflow. Change them to strscpy() and strncat() to fix potential issues.
- CVE-2024-54458:
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: bsg: Set bsg_queue to NULL after removal Currently, this does not cause any issues, but I believe it is necessary to set bsg_queue to NULL after removing it to prevent potential use-after-free (UAF) access.
- CVE-2024-54683:
In the Linux kernel, the following vulnerability has been resolved: netfilter: IDLETIMER: Fix for possible ABBA deadlock Deletion of the last rule referencing a given idletimer may happen at the same time as a read of its file in sysfs: | ====================================================== | WARNING: possible circular locking dependency detected | 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted | ------------------------------------------------------ | iptables/3303 is trying to acquire lock: | ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20 | | but task is already holding lock: | ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v] | | which lock already depends on the new lock. A simple reproducer is: | #!/bin/bash | | while true; do | iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme" | done & | while true; do | cat /sys/class/xt_idletimer/timers/testme >/dev/null | done Avoid this by freeing list_mutex right after deleting the element from the list, then continuing with the teardown.
- CVE-2024-56538:
In the Linux kernel, the following vulnerability has been resolved: drm: zynqmp_kms: Unplug DRM device before removal Prevent userspace accesses to the DRM device from causing use-after-frees by unplugging the device before we remove it. This causes any further userspace accesses to result in an error without further calls into this driver's internals.
- CVE-2024-56544:
In the Linux kernel, the following vulnerability has been resolved: udmabuf: change folios array from kmalloc to kvmalloc When PAGE_SIZE 4096, MAX_PAGE_ORDER 10, 64bit machine, page_alloc only support 4MB. If above this, trigger this warn and return NULL. udmabuf can change size limit, if change it to 3072(3GB), and then alloc 3GB udmabuf, will fail create. [ 4080.876581] ------------[ cut here ]------------ [ 4080.876843] WARNING: CPU: 3 PID: 2015 at mm/page_alloc.c:4556 __alloc_pages+0x2c8/0x350 [ 4080.878839] RIP: 0010:__alloc_pages+0x2c8/0x350 [ 4080.879470] Call Trace: [ 4080.879473] <TASK> [ 4080.879473] ? __alloc_pages+0x2c8/0x350 [ 4080.879475] ? __warn.cold+0x8e/0xe8 [ 4080.880647] ? __alloc_pages+0x2c8/0x350 [ 4080.880909] ? report_bug+0xff/0x140 [ 4080.881175] ? handle_bug+0x3c/0x80 [ 4080.881556] ? exc_invalid_op+0x17/0x70 [ 4080.881559] ? asm_exc_invalid_op+0x1a/0x20 [ 4080.882077] ? udmabuf_create+0x131/0x400 Because MAX_PAGE_ORDER, kmalloc can max alloc 4096 * (1 << 10), 4MB memory, each array entry is pointer(8byte), so can save 524288 pages(2GB). Further more, costly order(order 3) may not be guaranteed that it can be applied for, due to fragmentation. This patch change udmabuf array use kvmalloc_array, this can fallback alloc into vmalloc, which can guarantee allocation for any size and does not affect the performance of kmalloc allocations.
- CVE-2024-56549:
In the Linux kernel, the following vulnerability has been resolved: cachefiles: Fix NULL pointer dereference in object->file At present, the object->file has the NULL pointer dereference problem in ondemand-mode. The root cause is that the allocated fd and object->file lifetime are inconsistent, and the user-space invocation to anon_fd uses object->file. Following is the process that triggers the issue: [write fd] [umount] cachefiles_ondemand_fd_write_iter fscache_cookie_state_machine cachefiles_withdraw_cookie if (!file) return -ENOBUFS cachefiles_clean_up_object cachefiles_unmark_inode_in_use fput(object->file) object->file = NULL // file NULL pointer dereference! __cachefiles_write(..., file, ...) Fix this issue by add an additional reference count to the object->file before write/llseek, and decrement after it finished.
- CVE-2024-56565:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to drop all discards after creating snapshot on lvm device Piergiorgio reported a bug in bugzilla as below: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 969 at fs/f2fs/segment.c:1330 RIP: 0010:__submit_discard_cmd+0x27d/0x400 [f2fs] Call Trace: __issue_discard_cmd+0x1ca/0x350 [f2fs] issue_discard_thread+0x191/0x480 [f2fs] kthread+0xcf/0x100 ret_from_fork+0x31/0x50 ret_from_fork_asm+0x1a/0x30 w/ below testcase, it can reproduce this bug quickly: - pvcreate /dev/vdb - vgcreate myvg1 /dev/vdb - lvcreate -L 1024m -n mylv1 myvg1 - mount /dev/myvg1/mylv1 /mnt/f2fs - dd if=/dev/zero of=/mnt/f2fs/file bs=1M count=20 - sync - rm /mnt/f2fs/file - sync - lvcreate -L 1024m -s -n mylv1-snapshot /dev/myvg1/mylv1 - umount /mnt/f2fs The root cause is: it will update discard_max_bytes of mounted lvm device to zero after creating snapshot on this lvm device, then, __submit_discard_cmd() will pass parameter @nr_sects w/ zero value to __blkdev_issue_discard(), it returns a NULL bio pointer, result in panic. This patch changes as below for fixing: 1. Let's drop all remained discards in f2fs_unfreeze() if snapshot of lvm device is created. 2. Checking discard_max_bytes before submitting discard during __submit_discard_cmd().
- CVE-2024-56566:
In the Linux kernel, the following vulnerability has been resolved: mm/slub: Avoid list corruption when removing a slab from the full list Boot with slub_debug=UFPZ. If allocated object failed in alloc_consistency_checks, all objects of the slab will be marked as used, and then the slab will be removed from the partial list. When an object belonging to the slab got freed later, the remove_full() function is called. Because the slab is neither on the partial list nor on the full list, it eventually lead to a list corruption (actually a list poison being detected). So we need to mark and isolate the slab page with metadata corruption, do not put it back in circulation. Because the debug caches avoid all the fastpaths, reusing the frozen bit to mark slab page with metadata corruption seems to be fine. [ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100) [ 4277.387023] ------------[ cut here ]------------ [ 4277.387880] kernel BUG at lib/list_debug.c:56! [ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI [ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1 [ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs] [ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91 [ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082 [ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000 [ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff [ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0 [ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910 [ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0 [ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000 [ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0 [ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 4277.410000] PKRU: 55555554 [ 4277.410645] Call Trace: [ 4277.411234] <TASK> [ 4277.411777] ? die+0x32/0x80 [ 4277.412439] ? do_trap+0xd6/0x100 [ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.414158] ? do_error_trap+0x6a/0x90 [ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.415915] ? exc_invalid_op+0x4c/0x60 [ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.417675] ? asm_exc_invalid_op+0x16/0x20 [ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0 [ 4277.420410] free_to_partial_list+0x515/0x5e0 [ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs] [ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs] [ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs] [ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs] [ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs] [ 4277.428567] xfs_inactive+0x22d/0x290 [xfs] [ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs] [ 4277.430479] process_one_work+0x171/0x340 [ 4277.431227] worker_thread+0x277/0x390 [ 4277.431962] ? __pfx_worker_thread+0x10/0x10 [ 4277.432752] kthread+0xf0/0x120 [ 4277.433382] ? __pfx_kthread+0x10/0x10 [ 4277.434134] ret_from_fork+0x2d/0x50 [ 4277.434837] ? __pfx_kthread+0x10/0x10 [ 4277.435566] ret_from_fork_asm+0x1b/0x30 [ 4277.436280] </TASK>
- CVE-2024-56583:
In the Linux kernel, the following vulnerability has been resolved: sched/deadline: Fix warning in migrate_enable for boosted tasks When running the following command: while true; do stress-ng --cyclic 30 --timeout 30s --minimize --quiet done a warning is eventually triggered: WARNING: CPU: 43 PID: 2848 at kernel/sched/deadline.c:794 setup_new_dl_entity+0x13e/0x180 ... Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? enqueue_dl_entity+0x631/0x6e0 ? setup_new_dl_entity+0x13e/0x180 ? __warn+0x7e/0xd0 ? report_bug+0x11a/0x1a0 ? handle_bug+0x3c/0x70 ? exc_invalid_op+0x14/0x70 ? asm_exc_invalid_op+0x16/0x20 enqueue_dl_entity+0x631/0x6e0 enqueue_task_dl+0x7d/0x120 __do_set_cpus_allowed+0xe3/0x280 __set_cpus_allowed_ptr_locked+0x140/0x1d0 __set_cpus_allowed_ptr+0x54/0xa0 migrate_enable+0x7e/0x150 rt_spin_unlock+0x1c/0x90 group_send_sig_info+0xf7/0x1a0 ? kill_pid_info+0x1f/0x1d0 kill_pid_info+0x78/0x1d0 kill_proc_info+0x5b/0x110 __x64_sys_kill+0x93/0xc0 do_syscall_64+0x5c/0xf0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 RIP: 0033:0x7f0dab31f92b This warning occurs because set_cpus_allowed dequeues and enqueues tasks with the ENQUEUE_RESTORE flag set. If the task is boosted, the warning is triggered. A boosted task already had its parameters set by rt_mutex_setprio, and a new call to setup_new_dl_entity is unnecessary, hence the WARN_ON call. Check if we are requeueing a boosted task and avoid calling setup_new_dl_entity if that's the case.
- CVE-2024-56588:
In the Linux kernel, the following vulnerability has been resolved: scsi: hisi_sas: Create all dump files during debugfs initialization For the current debugfs of hisi_sas, after user triggers dump, the driver allocate memory space to save the register information and create debugfs files to display the saved information. In this process, the debugfs files created after each dump. Therefore, when the dump is triggered while the driver is unbind, the following hang occurs: [67840.853907] Unable to handle kernel NULL pointer dereference at virtual address 00000000000000a0 [67840.862947] Mem abort info: [67840.865855] ESR = 0x0000000096000004 [67840.869713] EC = 0x25: DABT (current EL), IL = 32 bits [67840.875125] SET = 0, FnV = 0 [67840.878291] EA = 0, S1PTW = 0 [67840.881545] FSC = 0x04: level 0 translation fault [67840.886528] Data abort info: [67840.889524] ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 [67840.895117] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [67840.900284] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [67840.905709] user pgtable: 4k pages, 48-bit VAs, pgdp=0000002803a1f000 [67840.912263] [00000000000000a0] pgd=0000000000000000, p4d=0000000000000000 [67840.919177] Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP [67840.996435] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [67841.003628] pc : down_write+0x30/0x98 [67841.007546] lr : start_creating.part.0+0x60/0x198 [67841.012495] sp : ffff8000b979ba20 [67841.016046] x29: ffff8000b979ba20 x28: 0000000000000010 x27: 0000000000024b40 [67841.023412] x26: 0000000000000012 x25: ffff20202b355ae8 x24: ffff20202b35a8c8 [67841.030779] x23: ffffa36877928208 x22: ffffa368b4972240 x21: ffff8000b979bb18 [67841.038147] x20: ffff00281dc1e3c0 x19: fffffffffffffffe x18: 0000000000000020 [67841.045515] x17: 0000000000000000 x16: ffffa368b128a530 x15: ffffffffffffffff [67841.052888] x14: ffff8000b979bc18 x13: ffffffffffffffff x12: ffff8000b979bb18 [67841.060263] x11: 0000000000000000 x10: 0000000000000000 x9 : ffffa368b1289b18 [67841.067640] x8 : 0000000000000012 x7 : 0000000000000000 x6 : 00000000000003a9 [67841.075014] x5 : 0000000000000000 x4 : ffff002818c5cb00 x3 : 0000000000000001 [67841.082388] x2 : 0000000000000000 x1 : ffff002818c5cb00 x0 : 00000000000000a0 [67841.089759] Call trace: [67841.092456] down_write+0x30/0x98 [67841.096017] start_creating.part.0+0x60/0x198 [67841.100613] debugfs_create_dir+0x48/0x1f8 [67841.104950] debugfs_create_files_v3_hw+0x88/0x348 [hisi_sas_v3_hw] [67841.111447] debugfs_snapshot_regs_v3_hw+0x708/0x798 [hisi_sas_v3_hw] [67841.118111] debugfs_trigger_dump_v3_hw_write+0x9c/0x120 [hisi_sas_v3_hw] [67841.125115] full_proxy_write+0x68/0xc8 [67841.129175] vfs_write+0xd8/0x3f0 [67841.132708] ksys_write+0x70/0x108 [67841.136317] __arm64_sys_write+0x24/0x38 [67841.140440] invoke_syscall+0x50/0x128 [67841.144385] el0_svc_common.constprop.0+0xc8/0xf0 [67841.149273] do_el0_svc+0x24/0x38 [67841.152773] el0_svc+0x38/0xd8 [67841.156009] el0t_64_sync_handler+0xc0/0xc8 [67841.160361] el0t_64_sync+0x1a4/0x1a8 [67841.164189] Code: b9000882 d2800002 d2800023 f9800011 (c85ffc05) [67841.170443] ---[ end trace 0000000000000000 ]--- To fix this issue, create all directories and files during debugfs initialization. In this way, the driver only needs to allocate memory space to save information each time the user triggers dumping.
- CVE-2024-56591:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: hci_conn: Use disable_delayed_work_sync This makes use of disable_delayed_work_sync instead cancel_delayed_work_sync as it not only cancel the ongoing work but also disables new submit which is disarable since the object holding the work is about to be freed.
- CVE-2024-56592:
In the Linux kernel, the following vulnerability has been resolved: bpf: Call free_htab_elem() after htab_unlock_bucket() For htab of maps, when the map is removed from the htab, it may hold the last reference of the map. bpf_map_fd_put_ptr() will invoke bpf_map_free_id() to free the id of the removed map element. However, bpf_map_fd_put_ptr() is invoked while holding a bucket lock (raw_spin_lock_t), and bpf_map_free_id() attempts to acquire map_idr_lock (spinlock_t), triggering the following lockdep warning: ============================= [ BUG: Invalid wait context ] 6.11.0-rc4+ #49 Not tainted ----------------------------- test_maps/4881 is trying to lock: ffffffff84884578 (map_idr_lock){+...}-{3:3}, at: bpf_map_free_id.part.0+0x21/0x70 other info that might help us debug this: context-{5:5} 2 locks held by test_maps/4881: #0: ffffffff846caf60 (rcu_read_lock){....}-{1:3}, at: bpf_fd_htab_map_update_elem+0xf9/0x270 #1: ffff888149ced148 (&htab->lockdep_key#2){....}-{2:2}, at: htab_map_update_elem+0x178/0xa80 stack backtrace: CPU: 0 UID: 0 PID: 4881 Comm: test_maps Not tainted 6.11.0-rc4+ #49 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), ... Call Trace: <TASK> dump_stack_lvl+0x6e/0xb0 dump_stack+0x10/0x20 __lock_acquire+0x73e/0x36c0 lock_acquire+0x182/0x450 _raw_spin_lock_irqsave+0x43/0x70 bpf_map_free_id.part.0+0x21/0x70 bpf_map_put+0xcf/0x110 bpf_map_fd_put_ptr+0x9a/0xb0 free_htab_elem+0x69/0xe0 htab_map_update_elem+0x50f/0xa80 bpf_fd_htab_map_update_elem+0x131/0x270 htab_map_update_elem+0x50f/0xa80 bpf_fd_htab_map_update_elem+0x131/0x270 bpf_map_update_value+0x266/0x380 __sys_bpf+0x21bb/0x36b0 __x64_sys_bpf+0x45/0x60 x64_sys_call+0x1b2a/0x20d0 do_syscall_64+0x5d/0x100 entry_SYSCALL_64_after_hwframe+0x76/0x7e One way to fix the lockdep warning is using raw_spinlock_t for map_idr_lock as well. However, bpf_map_alloc_id() invokes idr_alloc_cyclic() after acquiring map_idr_lock, it will trigger a similar lockdep warning because the slab's lock (s->cpu_slab->lock) is still a spinlock. Instead of changing map_idr_lock's type, fix the issue by invoking htab_put_fd_value() after htab_unlock_bucket(). However, only deferring the invocation of htab_put_fd_value() is not enough, because the old map pointers in htab of maps can not be saved during batched deletion. Therefore, also defer the invocation of free_htab_elem(), so these to-be-freed elements could be linked together similar to lru map. There are four callers for ->map_fd_put_ptr: (1) alloc_htab_elem() (through htab_put_fd_value()) It invokes ->map_fd_put_ptr() under a raw_spinlock_t. The invocation of htab_put_fd_value() can not simply move after htab_unlock_bucket(), because the old element has already been stashed in htab->extra_elems. It may be reused immediately after htab_unlock_bucket() and the invocation of htab_put_fd_value() after htab_unlock_bucket() may release the newly-added element incorrectly. Therefore, saving the map pointer of the old element for htab of maps before unlocking the bucket and releasing the map_ptr after unlock. Beside the map pointer in the old element, should do the same thing for the special fields in the old element as well. (2) free_htab_elem() (through htab_put_fd_value()) Its caller includes __htab_map_lookup_and_delete_elem(), htab_map_delete_elem() and __htab_map_lookup_and_delete_batch(). For htab_map_delete_elem(), simply invoke free_htab_elem() after htab_unlock_bucket(). For __htab_map_lookup_and_delete_batch(), just like lru map, linking the to-be-freed element into node_to_free list and invoking free_htab_elem() for these element after unlock. It is safe to reuse batch_flink as the link for node_to_free, because these elements have been removed from the hash llist. Because htab of maps doesn't support lookup_and_delete operation, __htab_map_lookup_and_delete_elem() doesn't have the problem, so kept it as ---truncated---
- CVE-2024-56609:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: use ieee80211_purge_tx_queue() to purge TX skb When removing kernel modules by: rmmod rtw88_8723cs rtw88_8703b rtw88_8723x rtw88_sdio rtw88_core Driver uses skb_queue_purge() to purge TX skb, but not report tx status causing "Have pending ack frames!" warning. Use ieee80211_purge_tx_queue() to correct this. Since ieee80211_purge_tx_queue() doesn't take locks, to prevent racing between TX work and purge TX queue, flush and destroy TX work in advance. wlan0: deauthenticating from aa:f5:fd:60:4c:a8 by local choice (Reason: 3=DEAUTH_LEAVING) ------------[ cut here ]------------ Have pending ack frames! WARNING: CPU: 3 PID: 9232 at net/mac80211/main.c:1691 ieee80211_free_ack_frame+0x5c/0x90 [mac80211] CPU: 3 PID: 9232 Comm: rmmod Tainted: G C 6.10.1-200.fc40.aarch64 #1 Hardware name: pine64 Pine64 PinePhone Braveheart (1.1)/Pine64 PinePhone Braveheart (1.1), BIOS 2024.01 01/01/2024 pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ieee80211_free_ack_frame+0x5c/0x90 [mac80211] lr : ieee80211_free_ack_frame+0x5c/0x90 [mac80211] sp : ffff80008c1b37b0 x29: ffff80008c1b37b0 x28: ffff000003be8000 x27: 0000000000000000 x26: 0000000000000000 x25: ffff000003dc14b8 x24: ffff80008c1b37d0 x23: ffff000000ff9f80 x22: 0000000000000000 x21: 000000007fffffff x20: ffff80007c7e93d8 x19: ffff00006e66f400 x18: 0000000000000000 x17: ffff7ffffd2b3000 x16: ffff800083fc0000 x15: 0000000000000000 x14: 0000000000000000 x13: 2173656d61726620 x12: 6b636120676e6964 x11: 0000000000000000 x10: 000000000000005d x9 : ffff8000802af2b0 x8 : ffff80008c1b3430 x7 : 0000000000000001 x6 : 0000000000000001 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff000003be8000 Call trace: ieee80211_free_ack_frame+0x5c/0x90 [mac80211] idr_for_each+0x74/0x110 ieee80211_free_hw+0x44/0xe8 [mac80211] rtw_sdio_remove+0x9c/0xc0 [rtw88_sdio] sdio_bus_remove+0x44/0x180 device_remove+0x54/0x90 device_release_driver_internal+0x1d4/0x238 driver_detach+0x54/0xc0 bus_remove_driver+0x78/0x108 driver_unregister+0x38/0x78 sdio_unregister_driver+0x2c/0x40 rtw_8723cs_driver_exit+0x18/0x1000 [rtw88_8723cs] __do_sys_delete_module.isra.0+0x190/0x338 __arm64_sys_delete_module+0x1c/0x30 invoke_syscall+0x74/0x100 el0_svc_common.constprop.0+0x48/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x3c/0x158 el0t_64_sync_handler+0x120/0x138 el0t_64_sync+0x194/0x198 ---[ end trace 0000000000000000 ]---
- CVE-2024-56611:
In the Linux kernel, the following vulnerability has been resolved: mm/mempolicy: fix migrate_to_node() assuming there is at least one VMA in a MM We currently assume that there is at least one VMA in a MM, which isn't true. So we might end up having find_vma() return NULL, to then de-reference NULL. So properly handle find_vma() returning NULL. This fixes the report: Oops: general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] CPU: 1 UID: 0 PID: 6021 Comm: syz-executor284 Not tainted 6.12.0-rc7-syzkaller-00187-gf868cd251776 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/30/2024 RIP: 0010:migrate_to_node mm/mempolicy.c:1090 [inline] RIP: 0010:do_migrate_pages+0x403/0x6f0 mm/mempolicy.c:1194 Code: ... RSP: 0018:ffffc9000375fd08 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffffc9000375fd78 RCX: 0000000000000000 RDX: ffff88807e171300 RSI: dffffc0000000000 RDI: ffff88803390c044 RBP: ffff88807e171428 R08: 0000000000000014 R09: fffffbfff2039ef1 R10: ffffffff901cf78f R11: 0000000000000000 R12: 0000000000000003 R13: ffffc9000375fe90 R14: ffffc9000375fe98 R15: ffffc9000375fdf8 FS: 00005555919e1380(0000) GS:ffff8880b8700000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00005555919e1ca8 CR3: 000000007f12a000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> kernel_migrate_pages+0x5b2/0x750 mm/mempolicy.c:1709 __do_sys_migrate_pages mm/mempolicy.c:1727 [inline] __se_sys_migrate_pages mm/mempolicy.c:1723 [inline] __x64_sys_migrate_pages+0x96/0x100 mm/mempolicy.c:1723 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f [akpm@linux-foundation.org: add unlikely()]
- CVE-2024-56641:
In the Linux kernel, the following vulnerability has been resolved: net/smc: initialize close_work early to avoid warning We encountered a warning that close_work was canceled before initialization. WARNING: CPU: 7 PID: 111103 at kernel/workqueue.c:3047 __flush_work+0x19e/0x1b0 Workqueue: events smc_lgr_terminate_work [smc] RIP: 0010:__flush_work+0x19e/0x1b0 Call Trace: ? __wake_up_common+0x7a/0x190 ? work_busy+0x80/0x80 __cancel_work_timer+0xe3/0x160 smc_close_cancel_work+0x1a/0x70 [smc] smc_close_active_abort+0x207/0x360 [smc] __smc_lgr_terminate.part.38+0xc8/0x180 [smc] process_one_work+0x19e/0x340 worker_thread+0x30/0x370 ? process_one_work+0x340/0x340 kthread+0x117/0x130 ? __kthread_cancel_work+0x50/0x50 ret_from_fork+0x22/0x30 This is because when smc_close_cancel_work is triggered, e.g. the RDMA driver is rmmod and the LGR is terminated, the conn->close_work is flushed before initialization, resulting in WARN_ON(!work->func). __smc_lgr_terminate | smc_connect_{rdma|ism} ------------------------------------------------------------- | smc_conn_create | \- smc_lgr_register_conn for conn in lgr->conns_all | \- smc_conn_kill | \- smc_close_active_abort | \- smc_close_cancel_work | \- cancel_work_sync | \- __flush_work | (close_work) | | smc_close_init | \- INIT_WORK(&close_work) So fix this by initializing close_work before establishing the connection.
- CVE-2024-56647:
In the Linux kernel, the following vulnerability has been resolved: net: Fix icmp host relookup triggering ip_rt_bug arp link failure may trigger ip_rt_bug while xfrm enabled, call trace is: WARNING: CPU: 0 PID: 0 at net/ipv4/route.c:1241 ip_rt_bug+0x14/0x20 Modules linked in: CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.12.0-rc6-00077-g2e1b3cc9d7f7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:ip_rt_bug+0x14/0x20 Call Trace: <IRQ> ip_send_skb+0x14/0x40 __icmp_send+0x42d/0x6a0 ipv4_link_failure+0xe2/0x1d0 arp_error_report+0x3c/0x50 neigh_invalidate+0x8d/0x100 neigh_timer_handler+0x2e1/0x330 call_timer_fn+0x21/0x120 __run_timer_base.part.0+0x1c9/0x270 run_timer_softirq+0x4c/0x80 handle_softirqs+0xac/0x280 irq_exit_rcu+0x62/0x80 sysvec_apic_timer_interrupt+0x77/0x90 The script below reproduces this scenario: ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 \ dir out priority 0 ptype main flag localok icmp ip l a veth1 type veth ip a a 192.168.141.111/24 dev veth0 ip l s veth0 up ping 192.168.141.155 -c 1 icmp_route_lookup() create input routes for locally generated packets while xfrm relookup ICMP traffic.Then it will set input route (dst->out = ip_rt_bug) to skb for DESTUNREACH. For ICMP err triggered by locally generated packets, dst->dev of output route is loopback. Generally, xfrm relookup verification is not required on loopback interfaces (net.ipv4.conf.lo.disable_xfrm = 1). Skip icmp relookup for locally generated packets to fix it.
- CVE-2024-56657:
In the Linux kernel, the following vulnerability has been resolved: ALSA: control: Avoid WARN() for symlink errors Using WARN() for showing the error of symlink creations don't give more information than telling that something goes wrong, since the usual code path is a lregister callback from each control element creation. More badly, the use of WARN() rather confuses fuzzer as if it were serious issues. This patch downgrades the warning messages to use the normal dev_err() instead of WARN(). For making it clearer, add the function name to the prefix, too.
- CVE-2024-56692:
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on node blkaddr in truncate_node() syzbot reports a f2fs bug as below: ------------[ cut here ]------------ kernel BUG at fs/f2fs/segment.c:2534! RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 Call Trace: truncate_node+0x1ae/0x8c0 fs/f2fs/node.c:909 f2fs_remove_inode_page+0x5c2/0x870 fs/f2fs/node.c:1288 f2fs_evict_inode+0x879/0x15c0 fs/f2fs/inode.c:856 evict+0x4e8/0x9b0 fs/inode.c:723 f2fs_handle_failed_inode+0x271/0x2e0 fs/f2fs/inode.c:986 f2fs_create+0x357/0x530 fs/f2fs/namei.c:394 lookup_open fs/namei.c:3595 [inline] open_last_lookups fs/namei.c:3694 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3930 do_filp_open+0x235/0x490 fs/namei.c:3960 do_sys_openat2+0x13e/0x1d0 fs/open.c:1415 do_sys_open fs/open.c:1430 [inline] __do_sys_openat fs/open.c:1446 [inline] __se_sys_openat fs/open.c:1441 [inline] __x64_sys_openat+0x247/0x2a0 fs/open.c:1441 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0010:f2fs_invalidate_blocks+0x35f/0x370 fs/f2fs/segment.c:2534 The root cause is: on a fuzzed image, blkaddr in nat entry may be corrupted, then it will cause system panic when using it in f2fs_invalidate_blocks(), to avoid this, let's add sanity check on nat blkaddr in truncate_node().
- CVE-2024-56712:
In the Linux kernel, the following vulnerability has been resolved: udmabuf: fix memory leak on last export_udmabuf() error path In export_udmabuf(), if dma_buf_fd() fails because the FD table is full, a dma_buf owning the udmabuf has already been created; but the error handling in udmabuf_create() will tear down the udmabuf without doing anything about the containing dma_buf. This leaves a dma_buf in memory that contains a dangling pointer; though that doesn't seem to lead to anything bad except a memory leak. Fix it by moving the dma_buf_fd() call out of export_udmabuf() so that we can give it different error handling. Note that the shape of this code changed a lot in commit 5e72b2b41a21 ("udmabuf: convert udmabuf driver to use folios"); but the memory leak seems to have existed since the introduction of udmabuf.
- CVE-2024-56719:
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: fix TSO DMA API usage causing oops Commit 66600fac7a98 ("net: stmmac: TSO: Fix unbalanced DMA map/unmap for non-paged SKB data") moved the assignment of tx_skbuff_dma[]'s members to be later in stmmac_tso_xmit(). The buf (dma cookie) and len stored in this structure are passed to dma_unmap_single() by stmmac_tx_clean(). The DMA API requires that the dma cookie passed to dma_unmap_single() is the same as the value returned from dma_map_single(). However, by moving the assignment later, this is not the case when priv->dma_cap.addr64 > 32 as "des" is offset by proto_hdr_len. This causes problems such as: dwc-eth-dwmac 2490000.ethernet eth0: Tx DMA map failed and with DMA_API_DEBUG enabled: DMA-API: dwc-eth-dwmac 2490000.ethernet: device driver tries to +free DMA memory it has not allocated [device address=0x000000ffffcf65c0] [size=66 bytes] Fix this by maintaining "des" as the original DMA cookie, and use tso_des to pass the offset DMA cookie to stmmac_tso_allocator(). Full details of the crashes can be found at: https://lore.kernel.org/all/d8112193-0386-4e14-b516-37c2d838171a@nvidia.com/ https://lore.kernel.org/all/klkzp5yn5kq5efgtrow6wbvnc46bcqfxs65nz3qy77ujr5turc@bwwhelz2l4dw/
- CVE-2024-56729:
In the Linux kernel, the following vulnerability has been resolved: smb: Initialize cfid->tcon before performing network ops Avoid leaking a tcon ref when a lease break races with opening the cached directory. Processing the leak break might take a reference to the tcon in cached_dir_lease_break() and then fail to release the ref in cached_dir_offload_close, since cfid->tcon is still NULL.
- CVE-2024-56742:
In the Linux kernel, the following vulnerability has been resolved: vfio/mlx5: Fix an unwind issue in mlx5vf_add_migration_pages() Fix an unwind issue in mlx5vf_add_migration_pages(). If a set of pages is allocated but fails to be added to the SG table, they need to be freed to prevent a memory leak. Any pages successfully added to the SG table will be freed as part of mlx5vf_free_data_buffer().
- CVE-2024-56757:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btusb: mediatek: add intf release flow when usb disconnect MediaTek claim an special usb intr interface for ISO data transmission. The interface need to be released before unregistering hci device when usb disconnect. Removing BT usb dongle without properly releasing the interface may cause Kernel panic while unregister hci device.
- CVE-2024-56758:
In the Linux kernel, the following vulnerability has been resolved: btrfs: check folio mapping after unlock in relocate_one_folio() When we call btrfs_read_folio() to bring a folio uptodate, we unlock the folio. The result of that is that a different thread can modify the mapping (like remove it with invalidate) before we call folio_lock(). This results in an invalid page and we need to try again. In particular, if we are relocating concurrently with aborting a transaction, this can result in a crash like the following: BUG: kernel NULL pointer dereference, address: 0000000000000000 PGD 0 P4D 0 Oops: 0000 [#1] SMP CPU: 76 PID: 1411631 Comm: kworker/u322:5 Workqueue: events_unbound btrfs_reclaim_bgs_work RIP: 0010:set_page_extent_mapped+0x20/0xb0 RSP: 0018:ffffc900516a7be8 EFLAGS: 00010246 RAX: ffffea009e851d08 RBX: ffffea009e0b1880 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffc900516a7b90 RDI: ffffea009e0b1880 RBP: 0000000003573000 R08: 0000000000000001 R09: ffff88c07fd2f3f0 R10: 0000000000000000 R11: 0000194754b575be R12: 0000000003572000 R13: 0000000003572fff R14: 0000000000100cca R15: 0000000005582fff FS: 0000000000000000(0000) GS:ffff88c07fd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 000000407d00f002 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <TASK> ? __die+0x78/0xc0 ? page_fault_oops+0x2a8/0x3a0 ? __switch_to+0x133/0x530 ? wq_worker_running+0xa/0x40 ? exc_page_fault+0x63/0x130 ? asm_exc_page_fault+0x22/0x30 ? set_page_extent_mapped+0x20/0xb0 relocate_file_extent_cluster+0x1a7/0x940 relocate_data_extent+0xaf/0x120 relocate_block_group+0x20f/0x480 btrfs_relocate_block_group+0x152/0x320 btrfs_relocate_chunk+0x3d/0x120 btrfs_reclaim_bgs_work+0x2ae/0x4e0 process_scheduled_works+0x184/0x370 worker_thread+0xc6/0x3e0 ? blk_add_timer+0xb0/0xb0 kthread+0xae/0xe0 ? flush_tlb_kernel_range+0x90/0x90 ret_from_fork+0x2f/0x40 ? flush_tlb_kernel_range+0x90/0x90 ret_from_fork_asm+0x11/0x20 </TASK> This occurs because cleanup_one_transaction() calls destroy_delalloc_inodes() which calls invalidate_inode_pages2() which takes the folio_lock before setting mapping to NULL. We fail to check this, and subsequently call set_extent_mapping(), which assumes that mapping != NULL (in fact it asserts that in debug mode) Note that the "fixes" patch here is not the one that introduced the race (the very first iteration of this code from 2009) but a more recent change that made this particular crash happen in practice.
- CVE-2024-56775:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix handling of plane refcount [Why] The mechanism to backup and restore plane states doesn't maintain refcount, which can cause issues if the refcount of the plane changes in between backup and restore operations, such as memory leaks if the refcount was supposed to go down, or double frees / invalid memory accesses if the refcount was supposed to go up. [How] Cache and re-apply current refcount when restoring plane states.
- CVE-2024-56782:
In the Linux kernel, the following vulnerability has been resolved: ACPI: x86: Add adev NULL check to acpi_quirk_skip_serdev_enumeration() acpi_dev_hid_match() does not check for adev == NULL, dereferencing it unconditional. Add a check for adev being NULL before calling acpi_dev_hid_match(). At the moment acpi_quirk_skip_serdev_enumeration() is never called with a controller_parent without an ACPI companion, but better safe than sorry.
- CVE-2024-56784:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Adding array index check to prevent memory corruption [Why & How] Array indices out of bound caused memory corruption. Adding checks to ensure that array index stays in bound.
- CVE-2024-56786:
In the Linux kernel, the following vulnerability has been resolved: bpf: put bpf_link's program when link is safe to be deallocated In general, BPF link's underlying BPF program should be considered to be reachable through attach hook -> link -> prog chain, and, pessimistically, we have to assume that as long as link's memory is not safe to free, attach hook's code might hold a pointer to BPF program and use it. As such, it's not (generally) correct to put link's program early before waiting for RCU GPs to go through. More eager bpf_prog_put() that we currently do is mostly correct due to BPF program's release code doing similar RCU GP waiting, but as will be shown in the following patches, BPF program can be non-sleepable (and, thus, reliant on only "classic" RCU GP), while BPF link's attach hook can have sleepable semantics and needs to be protected by RCU Tasks Trace, and for such cases BPF link has to go through RCU Tasks Trace + "classic" RCU GPs before being deallocated. And so, if we put BPF program early, we might free BPF program before we free BPF link, leading to use-after-free situation. So, this patch defers bpf_prog_put() until we are ready to perform bpf_link's deallocation. At worst, this delays BPF program freeing by one extra RCU GP, but that seems completely acceptable. Alternatively, we'd need more elaborate ways to determine BPF hook, BPF link, and BPF program lifetimes, and how they relate to each other, which seems like an unnecessary complication. Note, for most BPF links we still will perform eager bpf_prog_put() and link dealloc, so for those BPF links there are no observable changes whatsoever. Only BPF links that use deferred dealloc might notice slightly delayed freeing of BPF programs. Also, to reduce code and logic duplication, extract program put + link dealloc logic into bpf_link_dealloc() helper.
- CVE-2024-57795:
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Remove the direct link to net_device The similar patch in siw is in the link: https://git.kernel.org/rdma/rdma/c/16b87037b48889 This problem also occurred in RXE. The following analyze this problem. In the following Call Traces: " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 Read of size 4 at addr ffff8880554640b0 by task kworker/1:4/5295 CPU: 1 UID: 0 PID: 5295 Comm: kworker/1:4 Not tainted 6.12.0-rc3-syzkaller-00399-g9197b73fd7bb #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: infiniband ib_cache_event_task Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:377 [inline] print_report+0x169/0x550 mm/kasan/report.c:488 kasan_report+0x143/0x180 mm/kasan/report.c:601 dev_get_flags+0x188/0x1d0 net/core/dev.c:8782 rxe_query_port+0x12d/0x260 drivers/infiniband/sw/rxe/rxe_verbs.c:60 __ib_query_port drivers/infiniband/core/device.c:2111 [inline] ib_query_port+0x168/0x7d0 drivers/infiniband/core/device.c:2143 ib_cache_update+0x1a9/0xb80 drivers/infiniband/core/cache.c:1494 ib_cache_event_task+0xf3/0x1e0 drivers/infiniband/core/cache.c:1568 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa65/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f2/0x390 kernel/kthread.c:389 ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> " 1). In the link [1], " infiniband syz2: set down " This means that on 839.350575, the event ib_cache_event_task was sent andi queued in ib_wq. 2). In the link [1], " team0 (unregistering): Port device team_slave_0 removed " It indicates that before 843.251853, the net device should be freed. 3). In the link [1], " BUG: KASAN: slab-use-after-free in dev_get_flags+0x188/0x1d0 " This means that on 850.559070, this slab-use-after-free problem occurred. In all, on 839.350575, the event ib_cache_event_task was sent and queued in ib_wq, before 843.251853, the net device veth was freed. on 850.559070, this event was executed, and the mentioned freed net device was called. Thus, the above call trace occurred. [1] https://syzkaller.appspot.com/x/log.txt?x=12e7025f980000
- CVE-2024-57804:
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Fix corrupt config pages PHY state is switched in sysfs The driver, through the SAS transport, exposes a sysfs interface to enable/disable PHYs in a controller/expander setup. When multiple PHYs are disabled and enabled in rapid succession, the persistent and current config pages related to SAS IO unit/SAS Expander pages could get corrupted. Use separate memory for each config request.
- CVE-2024-57809:
In the Linux kernel, the following vulnerability has been resolved: PCI: imx6: Fix suspend/resume support on i.MX6QDL The suspend/resume functionality is currently broken on the i.MX6QDL platform, as documented in the NXP errata (ERR005723): https://www.nxp.com/docs/en/errata/IMX6DQCE.pdf This patch addresses the issue by sharing most of the suspend/resume sequences used by other i.MX devices, while avoiding modifications to critical registers that disrupt the PCIe functionality. It targets the same problem as the following downstream commit: https://github.com/nxp-imx/linux-imx/commit/4e92355e1f79d225ea842511fcfd42b343b32995 Unlike the downstream commit, this patch also resets the connected PCIe device if possible. Without this reset, certain drivers, such as ath10k or iwlwifi, will crash on resume. The device reset is also done by the driver on other i.MX platforms, making this patch consistent with existing practices. Upon resuming, the kernel will hang and display an error. Here's an example of the error encountered with the ath10k driver: ath10k_pci 0000:01:00.0: Unable to change power state from D3hot to D0, device inaccessible Unhandled fault: imprecise external abort (0x1406) at 0x0106f944 Without this patch, suspend/resume will fail on i.MX6QDL devices if a PCIe device is connected. [kwilczynski: commit log, added tag for stable releases]
- CVE-2024-57834:
In the Linux kernel, the following vulnerability has been resolved: media: vidtv: Fix a null-ptr-deref in vidtv_mux_stop_thread syzbot report a null-ptr-deref in vidtv_mux_stop_thread. [1] If dvb->mux is not initialized successfully by vidtv_mux_init() in the vidtv_start_streaming(), it will trigger null pointer dereference about mux in vidtv_mux_stop_thread(). Adjust the timing of streaming initialization and check it before stopping it. [1] KASAN: null-ptr-deref in range [0x0000000000000128-0x000000000000012f] CPU: 0 UID: 0 PID: 5842 Comm: syz-executor248 Not tainted 6.13.0-rc4-syzkaller-00012-g9b2ffa6148b1 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:vidtv_mux_stop_thread+0x26/0x80 drivers/media/test-drivers/vidtv/vidtv_mux.c:471 Code: 90 90 90 90 66 0f 1f 00 55 53 48 89 fb e8 82 2e c8 f9 48 8d bb 28 01 00 00 48 b8 00 00 00 00 00 fc ff df 48 89 fa 48 c1 ea 03 <0f> b6 04 02 84 c0 74 02 7e 3b 0f b6 ab 28 01 00 00 31 ff 89 ee e8 RSP: 0018:ffffc90003f2faa8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff87cfb125 RDX: 0000000000000025 RSI: ffffffff87d120ce RDI: 0000000000000128 RBP: ffff888029b8d220 R08: 0000000000000005 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000003 R12: ffff888029b8d188 R13: ffffffff8f590aa0 R14: ffffc9000581c5c8 R15: ffff888029a17710 FS: 00007f7eef5156c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7eef5e635c CR3: 0000000076ca6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> vidtv_stop_streaming drivers/media/test-drivers/vidtv/vidtv_bridge.c:209 [inline] vidtv_stop_feed+0x151/0x250 drivers/media/test-drivers/vidtv/vidtv_bridge.c:252 dmx_section_feed_stop_filtering+0x90/0x160 drivers/media/dvb-core/dvb_demux.c:1000 dvb_dmxdev_feed_stop.isra.0+0x1ee/0x270 drivers/media/dvb-core/dmxdev.c:486 dvb_dmxdev_filter_stop+0x22a/0x3a0 drivers/media/dvb-core/dmxdev.c:559 dvb_dmxdev_filter_free drivers/media/dvb-core/dmxdev.c:840 [inline] dvb_demux_release+0x92/0x550 drivers/media/dvb-core/dmxdev.c:1246 __fput+0x3f8/0xb60 fs/file_table.c:450 task_work_run+0x14e/0x250 kernel/task_work.c:239 get_signal+0x1d3/0x2610 kernel/signal.c:2790 arch_do_signal_or_restart+0x90/0x7e0 arch/x86/kernel/signal.c:337 exit_to_user_mode_loop kernel/entry/common.c:111 [inline] exit_to_user_mode_prepare include/linux/entry-common.h:329 [inline] __syscall_exit_to_user_mode_work kernel/entry/common.c:207 [inline] syscall_exit_to_user_mode+0x150/0x2a0 kernel/entry/common.c:218 do_syscall_64+0xda/0x250 arch/x86/entry/common.c:89 entry_SYSCALL_64_after_hwframe+0x77/0x7f
- CVE-2024-57843:
In the Linux kernel, the following vulnerability has been resolved: virtio-net: fix overflow inside virtnet_rq_alloc When the frag just got a page, then may lead to regression on VM. Specially if the sysctl net.core.high_order_alloc_disable value is 1, then the frag always get a page when do refill. Which could see reliable crashes or scp failure (scp a file 100M in size to VM). The issue is that the virtnet_rq_dma takes up 16 bytes at the beginning of a new frag. When the frag size is larger than PAGE_SIZE, everything is fine. However, if the frag is only one page and the total size of the buffer and virtnet_rq_dma is larger than one page, an overflow may occur. The commit f9dac92ba908 ("virtio_ring: enable premapped mode whatever use_dma_api") introduced this problem. And we reverted some commits to fix this in last linux version. Now we try to enable it and fix this bug directly. Here, when the frag size is not enough, we reduce the buffer len to fix this problem.
- CVE-2024-57852:
In the Linux kernel, the following vulnerability has been resolved: firmware: qcom: scm: smc: Handle missing SCM device Commit ca61d6836e6f ("firmware: qcom: scm: fix a NULL-pointer dereference") makes it explicit that qcom_scm_get_tzmem_pool() can return NULL, therefore its users should handle this.
- CVE-2024-57857:
In the Linux kernel, the following vulnerability has been resolved: RDMA/siw: Remove direct link to net_device Do not manage a per device direct link to net_device. Rely on associated ib_devices net_device management, not doubling the effort locally. A badly managed local link to net_device was causing a 'KASAN: slab-use-after-free' exception during siw_query_port() call.
- CVE-2024-57872:
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: pltfrm: Dellocate HBA during ufshcd_pltfrm_remove() This will ensure that the scsi host is cleaned up properly using scsi_host_dev_release(). Otherwise, it may lead to memory leaks.
- CVE-2024-57875:
In the Linux kernel, the following vulnerability has been resolved: block: RCU protect disk->conv_zones_bitmap Ensure that a disk revalidation changing the conventional zones bitmap of a disk does not cause invalid memory references when using the disk_zone_is_conv() helper by RCU protecting the disk->conv_zones_bitmap pointer. disk_zone_is_conv() is modified to operate under the RCU read lock and the function disk_set_conv_zones_bitmap() is added to update a disk conv_zones_bitmap pointer using rcu_replace_pointer() with the disk zone_wplugs_lock spinlock held. disk_free_zone_resources() is modified to call disk_update_zone_resources() with a NULL bitmap pointer to free the disk conv_zones_bitmap. disk_set_conv_zones_bitmap() is also used in disk_update_zone_resources() to set the new (revalidated) bitmap and free the old one.
- CVE-2024-57883:
In the Linux kernel, the following vulnerability has been resolved: mm: hugetlb: independent PMD page table shared count The folio refcount may be increased unexpectly through try_get_folio() by caller such as split_huge_pages. In huge_pmd_unshare(), we use refcount to check whether a pmd page table is shared. The check is incorrect if the refcount is increased by the above caller, and this can cause the page table leaked: BUG: Bad page state in process sh pfn:109324 page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x66 pfn:0x109324 flags: 0x17ffff800000000(node=0|zone=2|lastcpupid=0xfffff) page_type: f2(table) raw: 017ffff800000000 0000000000000000 0000000000000000 0000000000000000 raw: 0000000000000066 0000000000000000 00000000f2000000 0000000000000000 page dumped because: nonzero mapcount ... CPU: 31 UID: 0 PID: 7515 Comm: sh Kdump: loaded Tainted: G B 6.13.0-rc2master+ #7 Tainted: [B]=BAD_PAGE Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 Call trace: show_stack+0x20/0x38 (C) dump_stack_lvl+0x80/0xf8 dump_stack+0x18/0x28 bad_page+0x8c/0x130 free_page_is_bad_report+0xa4/0xb0 free_unref_page+0x3cc/0x620 __folio_put+0xf4/0x158 split_huge_pages_all+0x1e0/0x3e8 split_huge_pages_write+0x25c/0x2d8 full_proxy_write+0x64/0xd8 vfs_write+0xcc/0x280 ksys_write+0x70/0x110 __arm64_sys_write+0x24/0x38 invoke_syscall+0x50/0x120 el0_svc_common.constprop.0+0xc8/0xf0 do_el0_svc+0x24/0x38 el0_svc+0x34/0x128 el0t_64_sync_handler+0xc8/0xd0 el0t_64_sync+0x190/0x198 The issue may be triggered by damon, offline_page, page_idle, etc, which will increase the refcount of page table. 1. The page table itself will be discarded after reporting the "nonzero mapcount". 2. The HugeTLB page mapped by the page table miss freeing since we treat the page table as shared and a shared page table will not be unmapped. Fix it by introducing independent PMD page table shared count. As described by comment, pt_index/pt_mm/pt_frag_refcount are used for s390 gmap, x86 pgds and powerpc, pt_share_count is used for x86/arm64/riscv pmds, so we can reuse the field as pt_share_count.
- CVE-2024-57888:
In the Linux kernel, the following vulnerability has been resolved: workqueue: Do not warn when cancelling WQ_MEM_RECLAIM work from !WQ_MEM_RECLAIM worker After commit 746ae46c1113 ("drm/sched: Mark scheduler work queues with WQ_MEM_RECLAIM") amdgpu started seeing the following warning: [ ] workqueue: WQ_MEM_RECLAIM sdma0:drm_sched_run_job_work [gpu_sched] is flushing !WQ_MEM_RECLAIM events:amdgpu_device_delay_enable_gfx_off [amdgpu] ... [ ] Workqueue: sdma0 drm_sched_run_job_work [gpu_sched] ... [ ] Call Trace: [ ] <TASK> ... [ ] ? check_flush_dependency+0xf5/0x110 ... [ ] cancel_delayed_work_sync+0x6e/0x80 [ ] amdgpu_gfx_off_ctrl+0xab/0x140 [amdgpu] [ ] amdgpu_ring_alloc+0x40/0x50 [amdgpu] [ ] amdgpu_ib_schedule+0xf4/0x810 [amdgpu] [ ] ? drm_sched_run_job_work+0x22c/0x430 [gpu_sched] [ ] amdgpu_job_run+0xaa/0x1f0 [amdgpu] [ ] drm_sched_run_job_work+0x257/0x430 [gpu_sched] [ ] process_one_work+0x217/0x720 ... [ ] </TASK> The intent of the verifcation done in check_flush_depedency is to ensure forward progress during memory reclaim, by flagging cases when either a memory reclaim process, or a memory reclaim work item is flushed from a context not marked as memory reclaim safe. This is correct when flushing, but when called from the cancel(_delayed)_work_sync() paths it is a false positive because work is either already running, or will not be running at all. Therefore cancelling it is safe and we can relax the warning criteria by letting the helper know of the calling context. References: 746ae46c1113 ("drm/sched: Mark scheduler work queues with WQ_MEM_RECLAIM")
- CVE-2024-57895:
In the Linux kernel, the following vulnerability has been resolved: ksmbd: set ATTR_CTIME flags when setting mtime David reported that the new warning from setattr_copy_mgtime is coming like the following. [ 113.215316] ------------[ cut here ]------------ [ 113.215974] WARNING: CPU: 1 PID: 31 at fs/attr.c:300 setattr_copy+0x1ee/0x200 [ 113.219192] CPU: 1 UID: 0 PID: 31 Comm: kworker/1:1 Not tainted 6.13.0-rc1+ #234 [ 113.220127] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 [ 113.221530] Workqueue: ksmbd-io handle_ksmbd_work [ksmbd] [ 113.222220] RIP: 0010:setattr_copy+0x1ee/0x200 [ 113.222833] Code: 24 28 49 8b 44 24 30 48 89 53 58 89 43 6c 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 48 89 df e8 77 d6 ff ff e9 cd fe ff ff <0f> 0b e9 be fe ff ff 66 0 [ 113.225110] RSP: 0018:ffffaf218010fb68 EFLAGS: 00010202 [ 113.225765] RAX: 0000000000000120 RBX: ffffa446815f8568 RCX: 0000000000000003 [ 113.226667] RDX: ffffaf218010fd38 RSI: ffffa446815f8568 RDI: ffffffff94eb03a0 [ 113.227531] RBP: ffffaf218010fb90 R08: 0000001a251e217d R09: 00000000675259fa [ 113.228426] R10: 0000000002ba8a6d R11: ffffa4468196c7a8 R12: ffffaf218010fd38 [ 113.229304] R13: 0000000000000120 R14: ffffffff94eb03a0 R15: 0000000000000000 [ 113.230210] FS: 0000000000000000(0000) GS:ffffa44739d00000(0000) knlGS:0000000000000000 [ 113.231215] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 113.232055] CR2: 00007efe0053d27e CR3: 000000000331a000 CR4: 00000000000006b0 [ 113.232926] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 113.233812] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 113.234797] Call Trace: [ 113.235116] <TASK> [ 113.235393] ? __warn+0x73/0xd0 [ 113.235802] ? setattr_copy+0x1ee/0x200 [ 113.236299] ? report_bug+0xf3/0x1e0 [ 113.236757] ? handle_bug+0x4d/0x90 [ 113.237202] ? exc_invalid_op+0x13/0x60 [ 113.237689] ? asm_exc_invalid_op+0x16/0x20 [ 113.238185] ? setattr_copy+0x1ee/0x200 [ 113.238692] btrfs_setattr+0x80/0x820 [btrfs] [ 113.239285] ? get_stack_info_noinstr+0x12/0xf0 [ 113.239857] ? __module_address+0x22/0xa0 [ 113.240368] ? handle_ksmbd_work+0x6e/0x460 [ksmbd] [ 113.240993] ? __module_text_address+0x9/0x50 [ 113.241545] ? __module_address+0x22/0xa0 [ 113.242033] ? unwind_next_frame+0x10e/0x920 [ 113.242600] ? __pfx_stack_trace_consume_entry+0x10/0x10 [ 113.243268] notify_change+0x2c2/0x4e0 [ 113.243746] ? stack_depot_save_flags+0x27/0x730 [ 113.244339] ? set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.244993] set_file_basic_info+0x130/0x2b0 [ksmbd] [ 113.245613] ? process_scheduled_works+0xbe/0x310 [ 113.246181] ? worker_thread+0x100/0x240 [ 113.246696] ? kthread+0xc8/0x100 [ 113.247126] ? ret_from_fork+0x2b/0x40 [ 113.247606] ? ret_from_fork_asm+0x1a/0x30 [ 113.248132] smb2_set_info+0x63f/0xa70 [ksmbd] ksmbd is trying to set the atime and mtime via notify_change without also setting the ctime. so This patch add ATTR_CTIME flags when setting mtime to avoid a warning.
- CVE-2024-57898:
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: clear link ID from bitmap during link delete after clean up Currently, during link deletion, the link ID is first removed from the valid_links bitmap before performing any clean-up operations. However, some functions require the link ID to remain in the valid_links bitmap. One such example is cfg80211_cac_event(). The flow is - nl80211_remove_link() cfg80211_remove_link() ieee80211_del_intf_link() ieee80211_vif_set_links() ieee80211_vif_update_links() ieee80211_link_stop() cfg80211_cac_event() cfg80211_cac_event() requires link ID to be present but it is cleared already in cfg80211_remove_link(). Ultimately, WARN_ON() is hit. Therefore, clear the link ID from the bitmap only after completing the link clean-up.
- CVE-2024-57899:
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix mbss changed flags corruption on 32 bit systems On 32-bit systems, the size of an unsigned long is 4 bytes, while a u64 is 8 bytes. Therefore, when using or_each_set_bit(bit, &bits, sizeof(changed) * BITS_PER_BYTE), the code is incorrectly searching for a bit in a 32-bit variable that is expected to be 64 bits in size, leading to incorrect bit finding. Solution: Ensure that the size of the bits variable is correctly adjusted for each architecture. Call Trace: ? show_regs+0x54/0x58 ? __warn+0x6b/0xd4 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? report_bug+0x113/0x150 ? exc_overflow+0x30/0x30 ? handle_bug+0x27/0x44 ? exc_invalid_op+0x18/0x50 ? handle_exception+0xf6/0xf6 ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? exc_overflow+0x30/0x30 ? ieee80211_link_info_change_notify+0xcc/0xd4 [mac80211] ? ieee80211_mesh_work+0xff/0x260 [mac80211] ? cfg80211_wiphy_work+0x72/0x98 [cfg80211] ? process_one_work+0xf1/0x1fc ? worker_thread+0x2c0/0x3b4 ? kthread+0xc7/0xf0 ? mod_delayed_work_on+0x4c/0x4c ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork+0x24/0x38 ? kthread_complete_and_exit+0x14/0x14 ? ret_from_fork_asm+0xf/0x14 ? entry_INT80_32+0xf0/0xf0 [restore no-op path for no changes]
- CVE-2024-57900:
In the Linux kernel, the following vulnerability has been resolved: ila: serialize calls to nf_register_net_hooks() syzbot found a race in ila_add_mapping() [1] commit 031ae72825ce ("ila: call nf_unregister_net_hooks() sooner") attempted to fix a similar issue. Looking at the syzbot repro, we have concurrent ILA_CMD_ADD commands. Add a mutex to make sure at most one thread is calling nf_register_net_hooks(). [1] BUG: KASAN: slab-use-after-free in rht_key_hashfn include/linux/rhashtable.h:159 [inline] BUG: KASAN: slab-use-after-free in __rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604 Read of size 4 at addr ffff888028f40008 by task dhcpcd/5501 CPU: 1 UID: 0 PID: 5501 Comm: dhcpcd Not tainted 6.13.0-rc4-syzkaller-00054-gd6ef8b40d075 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xc3/0x620 mm/kasan/report.c:489 kasan_report+0xd9/0x110 mm/kasan/report.c:602 rht_key_hashfn include/linux/rhashtable.h:159 [inline] __rhashtable_lookup.constprop.0+0x426/0x550 include/linux/rhashtable.h:604 rhashtable_lookup include/linux/rhashtable.h:646 [inline] rhashtable_lookup_fast include/linux/rhashtable.h:672 [inline] ila_lookup_wildcards net/ipv6/ila/ila_xlat.c:127 [inline] ila_xlat_addr net/ipv6/ila/ila_xlat.c:652 [inline] ila_nf_input+0x1ee/0x620 net/ipv6/ila/ila_xlat.c:185 nf_hook_entry_hookfn include/linux/netfilter.h:154 [inline] nf_hook_slow+0xbb/0x200 net/netfilter/core.c:626 nf_hook.constprop.0+0x42e/0x750 include/linux/netfilter.h:269 NF_HOOK include/linux/netfilter.h:312 [inline] ipv6_rcv+0xa4/0x680 net/ipv6/ip6_input.c:309 __netif_receive_skb_one_core+0x12e/0x1e0 net/core/dev.c:5672 __netif_receive_skb+0x1d/0x160 net/core/dev.c:5785 process_backlog+0x443/0x15f0 net/core/dev.c:6117 __napi_poll.constprop.0+0xb7/0x550 net/core/dev.c:6883 napi_poll net/core/dev.c:6952 [inline] net_rx_action+0xa94/0x1010 net/core/dev.c:7074 handle_softirqs+0x213/0x8f0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0x109/0x170 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0xa4/0xc0 arch/x86/kernel/apic/apic.c:1049
- CVE-2024-57924:
In the Linux kernel, the following vulnerability has been resolved: fs: relax assertions on failure to encode file handles Encoding file handles is usually performed by a filesystem >encode_fh() method that may fail for various reasons. The legacy users of exportfs_encode_fh(), namely, nfsd and name_to_handle_at(2) syscall are ready to cope with the possibility of failure to encode a file handle. There are a few other users of exportfs_encode_{fh,fid}() that currently have a WARN_ON() assertion when ->encode_fh() fails. Relax those assertions because they are wrong. The second linked bug report states commit 16aac5ad1fa9 ("ovl: support encoding non-decodable file handles") in v6.6 as the regressing commit, but this is not accurate. The aforementioned commit only increases the chances of the assertion and allows triggering the assertion with the reproducer using overlayfs, inotify and drop_caches. Triggering this assertion was always possible with other filesystems and other reasons of ->encode_fh() failures and more particularly, it was also possible with the exact same reproducer using overlayfs that is mounted with options index=on,nfs_export=on also on kernels < v6.6. Therefore, I am not listing the aforementioned commit as a Fixes commit. Backport hint: this patch will have a trivial conflict applying to v6.6.y, and other trivial conflicts applying to stable kernels < v6.6.
- CVE-2024-57945:
In the Linux kernel, the following vulnerability has been resolved: riscv: mm: Fix the out of bound issue of vmemmap address In sparse vmemmap model, the virtual address of vmemmap is calculated as: ((struct page *)VMEMMAP_START - (phys_ram_base >> PAGE_SHIFT)). And the struct page's va can be calculated with an offset: (vmemmap + (pfn)). However, when initializing struct pages, kernel actually starts from the first page from the same section that phys_ram_base belongs to. If the first page's physical address is not (phys_ram_base >> PAGE_SHIFT), then we get an va below VMEMMAP_START when calculating va for it's struct page. For example, if phys_ram_base starts from 0x82000000 with pfn 0x82000, the first page in the same section is actually pfn 0x80000. During init_unavailable_range(), we will initialize struct page for pfn 0x80000 with virtual address ((struct page *)VMEMMAP_START - 0x2000), which is below VMEMMAP_START as well as PCI_IO_END. This commit fixes this bug by introducing a new variable 'vmemmap_start_pfn' which is aligned with memory section size and using it to calculate vmemmap address instead of phys_ram_base.
- CVE-2024-57950:
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Initialize denominator defaults to 1 [WHAT & HOW] Variables, used as denominators and maybe not assigned to other values, should be initialized to non-zero to avoid DIVIDE_BY_ZERO, as reported by Coverity. (cherry picked from commit e2c4c6c10542ccfe4a0830bb6c9fd5b177b7bbb7)
- CVE-2024-57952:
In the Linux kernel, the following vulnerability has been resolved: Revert "libfs: fix infinite directory reads for offset dir" The current directory offset allocator (based on mtree_alloc_cyclic) stores the next offset value to return in octx->next_offset. This mechanism typically returns values that increase monotonically over time. Eventually, though, the newly allocated offset value wraps back to a low number (say, 2) which is smaller than other already- allocated offset values. Yu Kuai <yukuai3@huawei.com> reports that, after commit 64a7ce76fb90 ("libfs: fix infinite directory reads for offset dir"), if a directory's offset allocator wraps, existing entries are no longer visible via readdir/getdents because offset_readdir() stops listing entries once an entry's offset is larger than octx->next_offset. These entries vanish persistently -- they can be looked up, but will never again appear in readdir(3) output. The reason for this is that the commit treats directory offsets as monotonically increasing integer values rather than opaque cookies, and introduces this comparison: if (dentry2offset(dentry) >= last_index) { On 64-bit platforms, the directory offset value upper bound is 2^63 - 1. Directory offsets will monotonically increase for millions of years without wrapping. On 32-bit platforms, however, LONG_MAX is 2^31 - 1. The allocator can wrap after only a few weeks (at worst). Revert commit 64a7ce76fb90 ("libfs: fix infinite directory reads for offset dir") to prepare for a fix that can work properly on 32-bit systems and might apply to recent LTS kernels where shmem employs the simple_offset mechanism.
- CVE-2024-57973:
In the Linux kernel, the following vulnerability has been resolved: rdma/cxgb4: Prevent potential integer overflow on 32bit The "gl->tot_len" variable is controlled by the user. It comes from process_responses(). On 32bit systems, the "gl->tot_len + sizeof(struct cpl_pass_accept_req) + sizeof(struct rss_header)" addition could have an integer wrapping bug. Use size_add() to prevent this.
- CVE-2024-57974:
In the Linux kernel, the following vulnerability has been resolved: udp: Deal with race between UDP socket address change and rehash If a UDP socket changes its local address while it's receiving datagrams, as a result of connect(), there is a period during which a lookup operation might fail to find it, after the address is changed but before the secondary hash (port and address) and the four-tuple hash (local and remote ports and addresses) are updated. Secondary hash chains were introduced by commit 30fff9231fad ("udp: bind() optimisation") and, as a result, a rehash operation became needed to make a bound socket reachable again after a connect(). This operation was introduced by commit 719f835853a9 ("udp: add rehash on connect()") which isn't however a complete fix: the socket will be found once the rehashing completes, but not while it's pending. This is noticeable with a socat(1) server in UDP4-LISTEN mode, and a client sending datagrams to it. After the server receives the first datagram (cf. _xioopen_ipdgram_listen()), it issues a connect() to the address of the sender, in order to set up a directed flow. Now, if the client, running on a different CPU thread, happens to send a (subsequent) datagram while the server's socket changes its address, but is not rehashed yet, this will result in a failed lookup and a port unreachable error delivered to the client, as apparent from the following reproducer: LEN=$(($(cat /proc/sys/net/core/wmem_default) / 4)) dd if=/dev/urandom bs=1 count=${LEN} of=tmp.in while :; do taskset -c 1 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc & sleep 0.1 || sleep 1 taskset -c 2 socat OPEN:tmp.in UDP4:localhost:1337,shut-null wait done where the client will eventually get ECONNREFUSED on a write() (typically the second or third one of a given iteration): 2024/11/13 21:28:23 socat[46901] E write(6, 0x556db2e3c000, 8192): Connection refused This issue was first observed as a seldom failure in Podman's tests checking UDP functionality while using pasta(1) to connect the container's network namespace, which leads us to a reproducer with the lookup error resulting in an ICMP packet on a tap device: LOCAL_ADDR="$(ip -j -4 addr show|jq -rM '.[] | .addr_info[0] | select(.scope == "global").local')" while :; do ./pasta --config-net -p pasta.pcap -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc & sleep 0.2 || sleep 1 socat OPEN:tmp.in UDP4:${LOCAL_ADDR}:1337,shut-null wait cmp tmp.in tmp.out done Once this fails: tmp.in tmp.out differ: char 8193, line 29 we can finally have a look at what's going on: $ tshark -r pasta.pcap 1 0.000000 :: ? ff02::16 ICMPv6 110 Multicast Listener Report Message v2 2 0.168690 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 3 0.168767 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 4 0.168806 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 5 0.168827 c6:47:05:8d:dc:04 ? Broadcast ARP 42 Who has 88.198.0.161? Tell 88.198.0.164 6 0.168851 9a:55:9a:55:9a:55 ? c6:47:05:8d:dc:04 ARP 42 88.198.0.161 is at 9a:55:9a:55:9a:55 7 0.168875 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 8 0.168896 88.198.0.164 ? 88.198.0.161 ICMP 590 Destination unreachable (Port unreachable) 9 0.168926 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 10 0.168959 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192 11 0.168989 88.198.0.161 ? 88.198.0.164 UDP 4138 60260 ? 1337 Len=4096 12 0.169010 88.198.0.161 ? 88.198.0.164 UDP 42 60260 ? 1337 Len=0 On the third datagram received, the network namespace of the container initiates an ARP lookup to deliver the ICMP message. In another variant of this reproducer, starting the client with: strace -f pasta --config-net -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,tru ---truncated---
- CVE-2024-57975:
In the Linux kernel, the following vulnerability has been resolved: btrfs: do proper folio cleanup when run_delalloc_nocow() failed [BUG] With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash with the following VM_BUG_ON_FOLIO(): BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28 BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28 page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664 aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774" flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff) page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio)) ------------[ cut here ]------------ kernel BUG at mm/page-writeback.c:2992! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87 Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : folio_clear_dirty_for_io+0x128/0x258 lr : folio_clear_dirty_for_io+0x128/0x258 Call trace: folio_clear_dirty_for_io+0x128/0x258 btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs] __process_folios_contig+0x154/0x268 [btrfs] extent_clear_unlock_delalloc+0x5c/0x80 [btrfs] run_delalloc_nocow+0x5f8/0x760 [btrfs] btrfs_run_delalloc_range+0xa8/0x220 [btrfs] writepage_delalloc+0x230/0x4c8 [btrfs] extent_writepage+0xb8/0x358 [btrfs] extent_write_cache_pages+0x21c/0x4e8 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x178/0x3a8 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] The first two lines of extra debug messages show the problem is caused by the error handling of run_delalloc_nocow(). E.g. we have the following dirtied range (4K blocksize 4K page size): 0 16K 32K |//////////////////////////////////////| | Pre-allocated | And the range [0, 16K) has a preallocated extent. - Enter run_delalloc_nocow() for range [0, 16K) Which found range [0, 16K) is preallocated, can do the proper NOCOW write. - Enter fallback_to_fow() for range [16K, 32K) Since the range [16K, 32K) is not backed by preallocated extent, we have to go COW. - cow_file_range() failed for range [16K, 32K) So cow_file_range() will do the clean up by clearing folio dirty, unlock the folios. Now the folios in range [16K, 32K) is unlocked. - Enter extent_clear_unlock_delalloc() from run_delalloc_nocow() Which is called with PAGE_START_WRITEBACK to start page writeback. But folios can only be marked writeback when it's properly locked, thus this triggered the VM_BUG_ON_FOLIO(). Furthermore there is another hidden but common bug that run_delalloc_nocow() is not clearing the folio dirty flags in its error handling path. This is the common bug shared between run_delalloc_nocow() and cow_file_range(). [FIX] - Clear folio dirty for range [@start, @cur_offset) Introduce a helper, cleanup_dirty_folios(), which will find and lock the folio in the range, clear the dirty flag and start/end the writeback, with the extra handling for the @locked_folio. - Introduce a helper to clear folio dirty, start and end writeback - Introduce a helper to record the last failed COW range end This is to trace which range we should skip, to avoid double unlocking. - Skip the failed COW range for the e ---truncated---
- CVE-2024-57976:
In the Linux kernel, the following vulnerability has been resolved: btrfs: do proper folio cleanup when cow_file_range() failed [BUG] When testing with COW fixup marked as BUG_ON() (this is involved with the new pin_user_pages*() change, which should not result new out-of-band dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW fixup path. This BUG_ON() happens just after a failed btrfs_run_delalloc_range(): BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28 ------------[ cut here ]------------ kernel BUG at fs/btrfs/extent_io.c:1444! Internal error: Oops - BUG: 00000000f2000800 [#1] SMP CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86 Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022 Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs] pc : extent_writepage_io+0x2d4/0x308 [btrfs] lr : extent_writepage_io+0x2d4/0x308 [btrfs] Call trace: extent_writepage_io+0x2d4/0x308 [btrfs] extent_writepage+0x218/0x330 [btrfs] extent_write_cache_pages+0x1d4/0x4b0 [btrfs] btrfs_writepages+0x94/0x150 [btrfs] do_writepages+0x74/0x190 filemap_fdatawrite_wbc+0x88/0xc8 start_delalloc_inodes+0x180/0x3b0 [btrfs] btrfs_start_delalloc_roots+0x174/0x280 [btrfs] shrink_delalloc+0x114/0x280 [btrfs] flush_space+0x250/0x2f8 [btrfs] btrfs_async_reclaim_data_space+0x180/0x228 [btrfs] process_one_work+0x164/0x408 worker_thread+0x25c/0x388 kthread+0x100/0x118 ret_from_fork+0x10/0x20 Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000) ---[ end trace 0000000000000000 ]--- [CAUSE] That failure is mostly from cow_file_range(), where we can hit -ENOSPC. Although the -ENOSPC is already a bug related to our space reservation code, let's just focus on the error handling. For example, we have the following dirty range [0, 64K) of an inode, with 4K sector size and 4K page size: 0 16K 32K 48K 64K |///////////////////////////////////////| |#######################################| Where |///| means page are still dirty, and |###| means the extent io tree has EXTENT_DELALLOC flag. - Enter extent_writepage() for page 0 - Enter btrfs_run_delalloc_range() for range [0, 64K) - Enter cow_file_range() for range [0, 64K) - Function btrfs_reserve_extent() only reserved one 16K extent So we created extent map and ordered extent for range [0, 16K) 0 16K 32K 48K 64K |////////|//////////////////////////////| |<- OE ->|##############################| And range [0, 16K) has its delalloc flag cleared. But since we haven't yet submit any bio, involved 4 pages are still dirty. - Function btrfs_reserve_extent() returns with -ENOSPC Now we have to run error cleanup, which will clear all EXTENT_DELALLOC* flags and clear the dirty flags for the remaining ranges: 0 16K 32K 48K 64K |////////| | | | | Note that range [0, 16K) still has its pages dirty. - Some time later, writeback is triggered again for the range [0, 16K) since the page range still has dirty flags. - btrfs_run_delalloc_range() will do nothing because there is no EXTENT_DELALLOC flag. - extent_writepage_io() finds page 0 has no ordered flag Which falls into the COW fixup path, triggering the BUG_ON(). Unfortunately this error handling bug dates back to the introduction of btrfs. Thankfully with the abuse of COW fixup, at least it won't crash the kernel. [FIX] Instead of immediately unlocking the extent and folios, we keep the extent and folios locked until either erroring out or the whole delalloc range finished. When the whole delalloc range finished without error, we just unlock the whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked cases) ---truncated---
- CVE-2024-57977:
In the Linux kernel, the following vulnerability has been resolved: memcg: fix soft lockup in the OOM process A soft lockup issue was found in the product with about 56,000 tasks were in the OOM cgroup, it was traversing them when the soft lockup was triggered. watchdog: BUG: soft lockup - CPU#2 stuck for 23s! [VM Thread:1503066] CPU: 2 PID: 1503066 Comm: VM Thread Kdump: loaded Tainted: G Hardware name: Huawei Cloud OpenStack Nova, BIOS RIP: 0010:console_unlock+0x343/0x540 RSP: 0000:ffffb751447db9a0 EFLAGS: 00000247 ORIG_RAX: ffffffffffffff13 RAX: 0000000000000001 RBX: 0000000000000000 RCX: 00000000ffffffff RDX: 0000000000000000 RSI: 0000000000000004 RDI: 0000000000000247 RBP: ffffffffafc71f90 R08: 0000000000000000 R09: 0000000000000040 R10: 0000000000000080 R11: 0000000000000000 R12: ffffffffafc74bd0 R13: ffffffffaf60a220 R14: 0000000000000247 R15: 0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f2fe6ad91f0 CR3: 00000004b2076003 CR4: 0000000000360ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: vprintk_emit+0x193/0x280 printk+0x52/0x6e dump_task+0x114/0x130 mem_cgroup_scan_tasks+0x76/0x100 dump_header+0x1fe/0x210 oom_kill_process+0xd1/0x100 out_of_memory+0x125/0x570 mem_cgroup_out_of_memory+0xb5/0xd0 try_charge+0x720/0x770 mem_cgroup_try_charge+0x86/0x180 mem_cgroup_try_charge_delay+0x1c/0x40 do_anonymous_page+0xb5/0x390 handle_mm_fault+0xc4/0x1f0 This is because thousands of processes are in the OOM cgroup, it takes a long time to traverse all of them. As a result, this lead to soft lockup in the OOM process. To fix this issue, call 'cond_resched' in the 'mem_cgroup_scan_tasks' function per 1000 iterations. For global OOM, call 'touch_softlockup_watchdog' per 1000 iterations to avoid this issue.
- CVE-2024-57978:
In the Linux kernel, the following vulnerability has been resolved: media: imx-jpeg: Fix potential error pointer dereference in detach_pm() The proble is on the first line: if (jpeg->pd_dev[i] && !pm_runtime_suspended(jpeg->pd_dev[i])) If jpeg->pd_dev[i] is an error pointer, then passing it to pm_runtime_suspended() will lead to an Oops. The other conditions check for both error pointers and NULL, but it would be more clear to use the IS_ERR_OR_NULL() check for that.
- CVE-2024-57979:
In the Linux kernel, the following vulnerability has been resolved: pps: Fix a use-after-free On a board running ntpd and gpsd, I'm seeing a consistent use-after-free in sys_exit() from gpsd when rebooting: pps pps1: removed ------------[ cut here ]------------ kobject: '(null)' (00000000db4bec24): is not initialized, yet kobject_put() is being called. WARNING: CPU: 2 PID: 440 at lib/kobject.c:734 kobject_put+0x120/0x150 CPU: 2 UID: 299 PID: 440 Comm: gpsd Not tainted 6.11.0-rc6-00308-gb31c44928842 #1 Hardware name: Raspberry Pi 4 Model B Rev 1.1 (DT) pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : kobject_put+0x120/0x150 lr : kobject_put+0x120/0x150 sp : ffffffc0803d3ae0 x29: ffffffc0803d3ae0 x28: ffffff8042dc9738 x27: 0000000000000001 x26: 0000000000000000 x25: ffffff8042dc9040 x24: ffffff8042dc9440 x23: ffffff80402a4620 x22: ffffff8042ef4bd0 x21: ffffff80405cb600 x20: 000000000008001b x19: ffffff8040b3b6e0 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 696e6920746f6e20 x14: 7369203a29343263 x13: 205d303434542020 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000 x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000 x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : 0000000000000000 Call trace: kobject_put+0x120/0x150 cdev_put+0x20/0x3c __fput+0x2c4/0x2d8 ____fput+0x1c/0x38 task_work_run+0x70/0xfc do_exit+0x2a0/0x924 do_group_exit+0x34/0x90 get_signal+0x7fc/0x8c0 do_signal+0x128/0x13b4 do_notify_resume+0xdc/0x160 el0_svc+0xd4/0xf8 el0t_64_sync_handler+0x140/0x14c el0t_64_sync+0x190/0x194 ---[ end trace 0000000000000000 ]--- ...followed by more symptoms of corruption, with similar stacks: refcount_t: underflow; use-after-free. kernel BUG at lib/list_debug.c:62! Kernel panic - not syncing: Oops - BUG: Fatal exception This happens because pps_device_destruct() frees the pps_device with the embedded cdev immediately after calling cdev_del(), but, as the comment above cdev_del() notes, fops for previously opened cdevs are still callable even after cdev_del() returns. I think this bug has always been there: I can't explain why it suddenly started happening every time I reboot this particular board. In commit d953e0e837e6 ("pps: Fix a use-after free bug when unregistering a source."), George Spelvin suggested removing the embedded cdev. That seems like the simplest way to fix this, so I've implemented his suggestion, using __register_chrdev() with pps_idr becoming the source of truth for which minor corresponds to which device. But now that pps_idr defines userspace visibility instead of cdev_add(), we need to be sure the pps->dev refcount can't reach zero while userspace can still find it again. So, the idr_remove() call moves to pps_unregister_cdev(), and pps_idr now holds a reference to pps->dev. pps_core: source serial1 got cdev (251:1) <...> pps pps1: removed pps_core: unregistering pps1 pps_core: deallocating pps1
- CVE-2024-57980:
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix double free in error path If the uvc_status_init() function fails to allocate the int_urb, it will free the dev->status pointer but doesn't reset the pointer to NULL. This results in the kfree() call in uvc_status_cleanup() trying to double-free the memory. Fix it by resetting the dev->status pointer to NULL after freeing it. Reviewed by: Ricardo Ribalda <ribalda@chromium.org>
- CVE-2024-57981:
In the Linux kernel, the following vulnerability has been resolved: usb: xhci: Fix NULL pointer dereference on certain command aborts If a command is queued to the final usable TRB of a ring segment, the enqueue pointer is advanced to the subsequent link TRB and no further. If the command is later aborted, when the abort completion is handled the dequeue pointer is advanced to the first TRB of the next segment. If no further commands are queued, xhci_handle_stopped_cmd_ring() sees the ring pointers unequal and assumes that there is a pending command, so it calls xhci_mod_cmd_timer() which crashes if cur_cmd was NULL. Don't attempt timer setup if cur_cmd is NULL. The subsequent doorbell ring likely is unnecessary too, but it's harmless. Leave it alone. This is probably Bug 219532, but no confirmation has been received. The issue has been independently reproduced and confirmed fixed using a USB MCU programmed to NAK the Status stage of SET_ADDRESS forever. Everything continued working normally after several prevented crashes.
- CVE-2024-57982:
In the Linux kernel, the following vulnerability has been resolved: xfrm: state: fix out-of-bounds read during lookup lookup and resize can run in parallel. The xfrm_state_hash_generation seqlock ensures a retry, but the hash functions can observe a hmask value that is too large for the new hlist array. rehash does: rcu_assign_pointer(net->xfrm.state_bydst, ndst) [..] net->xfrm.state_hmask = nhashmask; While state lookup does: h = xfrm_dst_hash(net, daddr, saddr, tmpl->reqid, encap_family); hlist_for_each_entry_rcu(x, net->xfrm.state_bydst + h, bydst) { This is only safe in case the update to state_bydst is larger than net->xfrm.xfrm_state_hmask (or if the lookup function gets serialized via state spinlock again). Fix this by prefetching state_hmask and the associated pointers. The xfrm_state_hash_generation seqlock retry will ensure that the pointer and the hmask will be consistent. The existing helpers, like xfrm_dst_hash(), are now unsafe for RCU side, add lockdep assertions to document that they are only safe for insert side. xfrm_state_lookup_byaddr() uses the spinlock rather than RCU. AFAICS this is an oversight from back when state lookup was converted to RCU, this lock should be replaced with RCU in a future patch.
- CVE-2024-57984:
In the Linux kernel, the following vulnerability has been resolved: i3c: dw: Fix use-after-free in dw_i3c_master driver due to race condition In dw_i3c_common_probe, &master->hj_work is bound with dw_i3c_hj_work. And dw_i3c_master_irq_handler can call dw_i3c_master_irq_handle_ibis function to start the work. If we remove the module which will call dw_i3c_common_remove to make cleanup, it will free master->base through i3c_master_unregister while the work mentioned above will be used. The sequence of operations that may lead to a UAF bug is as follows: CPU0 CPU1 | dw_i3c_hj_work dw_i3c_common_remove | i3c_master_unregister(&master->base) | device_unregister(&master->dev) | device_release | //free master->base | | i3c_master_do_daa(&master->base) | //use master->base Fix it by ensuring that the work is canceled before proceeding with the cleanup in dw_i3c_common_remove.
- CVE-2024-57986:
In the Linux kernel, the following vulnerability has been resolved: HID: core: Fix assumption that Resolution Multipliers must be in Logical Collections A report in 2019 by the syzbot fuzzer was found to be connected to two errors in the HID core associated with Resolution Multipliers. One of the errors was fixed by commit ea427a222d8b ("HID: core: Fix deadloop in hid_apply_multiplier."), but the other has not been fixed. This error arises because hid_apply_multipler() assumes that every Resolution Multiplier control is contained in a Logical Collection, i.e., there's no way the routine can ever set multiplier_collection to NULL. This is in spite of the fact that the function starts with a big comment saying: * "The Resolution Multiplier control must be contained in the same * Logical Collection as the control(s) to which it is to be applied. ... * If no Logical Collection is * defined, the Resolution Multiplier is associated with all * controls in the report." * HID Usage Table, v1.12, Section 4.3.1, p30 * * Thus, search from the current collection upwards until we find a * logical collection... The comment and the code overlook the possibility that none of the collections found may be a Logical Collection. The fix is to set the multiplier_collection pointer to NULL if the collection found isn't a Logical Collection.
- CVE-2024-57993:
In the Linux kernel, the following vulnerability has been resolved: HID: hid-thrustmaster: Fix warning in thrustmaster_probe by adding endpoint check syzbot has found a type mismatch between a USB pipe and the transfer endpoint, which is triggered by the hid-thrustmaster driver[1]. There is a number of similar, already fixed issues [2]. In this case as in others, implementing check for endpoint type fixes the issue. [1] https://syzkaller.appspot.com/bug?extid=040e8b3db6a96908d470 [2] https://syzkaller.appspot.com/bug?extid=348331f63b034f89b622
- CVE-2024-57996:
In the Linux kernel, the following vulnerability has been resolved: net_sched: sch_sfq: don't allow 1 packet limit The current implementation does not work correctly with a limit of 1. iproute2 actually checks for this and this patch adds the check in kernel as well. This fixes the following syzkaller reported crash: UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6 index 65535 is out of range for type 'struct sfq_head[128]' CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: __dump_stack lib/dump_stack.c:79 [inline] dump_stack+0x125/0x19f lib/dump_stack.c:120 ubsan_epilogue lib/ubsan.c:148 [inline] __ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347 sfq_link net/sched/sch_sfq.c:210 [inline] sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238 sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500 sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525 qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026 tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319 qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026 dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296 netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline] dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362 __dev_close_many+0x214/0x350 net/core/dev.c:1468 dev_close_many+0x207/0x510 net/core/dev.c:1506 unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738 unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695 unregister_netdevice include/linux/netdevice.h:2893 [inline] __tun_detach+0x6b6/0x1600 drivers/net/tun.c:689 tun_detach drivers/net/tun.c:705 [inline] tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640 __fput+0x203/0x840 fs/file_table.c:280 task_work_run+0x129/0x1b0 kernel/task_work.c:185 exit_task_work include/linux/task_work.h:33 [inline] do_exit+0x5ce/0x2200 kernel/exit.c:931 do_group_exit+0x144/0x310 kernel/exit.c:1046 __do_sys_exit_group kernel/exit.c:1057 [inline] __se_sys_exit_group kernel/exit.c:1055 [inline] __x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055 do_syscall_64+0x6c/0xd0 entry_SYSCALL_64_after_hwframe+0x61/0xcb RIP: 0033:0x7fe5e7b52479 Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f. RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479 RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000 RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014 R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0 R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270 The crash can be also be reproduced with the following (with a tc recompiled to allow for sfq limits of 1): tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s ../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1 ifconfig dummy0 up ping -I dummy0 -f -c2 -W0.1 8.8.8.8 sleep 1 Scenario that triggers the crash: * the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1 * TBF dequeues: it peeks from SFQ which moves the packet to the gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so it schedules itself for later. * the second packet is sent and TBF tries to queues it to SFQ. qdisc qlen is now 2 and because the SFQ limit is 1 the packet is dropped by SFQ. At this point qlen is 1, and all of the SFQ slots are empty, however q->tail is not NULL. At this point, assuming no more packets are queued, when sch_dequeue runs again it will decrement the qlen for the current empty slot causing an underflow and the subsequent out of bounds access.
- CVE-2024-57997:
In the Linux kernel, the following vulnerability has been resolved: wifi: wcn36xx: fix channel survey memory allocation size KASAN reported a memory allocation issue in wcn->chan_survey due to incorrect size calculation. This commit uses kcalloc to allocate memory for wcn->chan_survey, ensuring proper initialization and preventing the use of uninitialized values when there are no frames on the channel.
- CVE-2024-57998:
In the Linux kernel, the following vulnerability has been resolved: OPP: add index check to assert to avoid buffer overflow in _read_freq() Pass the freq index to the assert function to make sure we do not read a freq out of the opp->rates[] table when called from the indexed variants: dev_pm_opp_find_freq_exact_indexed() or dev_pm_opp_find_freq_ceil/floor_indexed(). Add a secondary parameter to the assert function, unused for assert_single_clk() then add assert_clk_index() which will check for the clock index when called from the _indexed() find functions.
- CVE-2024-57999:
In the Linux kernel, the following vulnerability has been resolved: powerpc/pseries/iommu: IOMMU incorrectly marks MMIO range in DDW Power Hypervisor can possibily allocate MMIO window intersecting with Dynamic DMA Window (DDW) range, which is over 32-bit addressing. These MMIO pages needs to be marked as reserved so that IOMMU doesn't map DMA buffers in this range. The current code is not marking these pages correctly which is resulting in LPAR to OOPS while booting. The stack is at below BUG: Unable to handle kernel data access on read at 0xc00800005cd40000 Faulting instruction address: 0xc00000000005cdac Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries Modules linked in: af_packet rfkill ibmveth(X) lpfc(+) nvmet_fc nvmet nvme_keyring crct10dif_vpmsum nvme_fc nvme_fabrics nvme_core be2net(+) nvme_auth rtc_generic nfsd auth_rpcgss nfs_acl lockd grace sunrpc fuse configfs ip_tables x_tables xfs libcrc32c dm_service_time ibmvfc(X) scsi_transport_fc vmx_crypto gf128mul crc32c_vpmsum dm_mirror dm_region_hash dm_log dm_multipath dm_mod sd_mod scsi_dh_emc scsi_dh_rdac scsi_dh_alua t10_pi crc64_rocksoft_generic crc64_rocksoft sg crc64 scsi_mod Supported: Yes, External CPU: 8 PID: 241 Comm: kworker/8:1 Kdump: loaded Not tainted 6.4.0-150600.23.14-default #1 SLE15-SP6 b44ee71c81261b9e4bab5e0cde1f2ed891d5359b Hardware name: IBM,9080-M9S POWER9 (raw) 0x4e2103 0xf000005 of:IBM,FW950.B0 (VH950_149) hv:phyp pSeries Workqueue: events work_for_cpu_fn NIP: c00000000005cdac LR: c00000000005e830 CTR: 0000000000000000 REGS: c00001400c9ff770 TRAP: 0300 Not tainted (6.4.0-150600.23.14-default) MSR: 800000000280b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 24228448 XER: 00000001 CFAR: c00000000005cdd4 DAR: c00800005cd40000 DSISR: 40000000 IRQMASK: 0 GPR00: c00000000005e830 c00001400c9ffa10 c000000001987d00 c00001400c4fe800 GPR04: 0000080000000000 0000000000000001 0000000004000000 0000000000800000 GPR08: 0000000004000000 0000000000000001 c00800005cd40000 ffffffffffffffff GPR12: 0000000084228882 c00000000a4c4f00 0000000000000010 0000080000000000 GPR16: c00001400c4fe800 0000000004000000 0800000000000000 c00000006088b800 GPR20: c00001401a7be980 c00001400eff3800 c000000002a2da68 000000000000002b GPR24: c0000000026793a8 c000000002679368 000000000000002a c0000000026793c8 GPR28: 000008007effffff 0000080000000000 0000000000800000 c00001400c4fe800 NIP [c00000000005cdac] iommu_table_reserve_pages+0xac/0x100 LR [c00000000005e830] iommu_init_table+0x80/0x1e0 Call Trace: [c00001400c9ffa10] [c00000000005e810] iommu_init_table+0x60/0x1e0 (unreliable) [c00001400c9ffa90] [c00000000010356c] iommu_bypass_supported_pSeriesLP+0x9cc/0xe40 [c00001400c9ffc30] [c00000000005c300] dma_iommu_dma_supported+0xf0/0x230 [c00001400c9ffcb0] [c00000000024b0c4] dma_supported+0x44/0x90 [c00001400c9ffcd0] [c00000000024b14c] dma_set_mask+0x3c/0x80 [c00001400c9ffd00] [c0080000555b715c] be_probe+0xc4/0xb90 [be2net] [c00001400c9ffdc0] [c000000000986f3c] local_pci_probe+0x6c/0x110 [c00001400c9ffe40] [c000000000188f28] work_for_cpu_fn+0x38/0x60 [c00001400c9ffe70] [c00000000018e454] process_one_work+0x314/0x620 [c00001400c9fff10] [c00000000018f280] worker_thread+0x2b0/0x620 [c00001400c9fff90] [c00000000019bb18] kthread+0x148/0x150 [c00001400c9fffe0] [c00000000000ded8] start_kernel_thread+0x14/0x18 There are 2 issues in the code 1. The index is "int" while the address is "unsigned long". This results in negative value when setting the bitmap. 2. The DMA offset is page shifted but the MMIO range is used as-is (64-bit address). MMIO address needs to be page shifted as well.
- CVE-2024-58001:
In the Linux kernel, the following vulnerability has been resolved: ocfs2: handle a symlink read error correctly Patch series "Convert ocfs2 to use folios". Mark did a conversion of ocfs2 to use folios and sent it to me as a giant patch for review ;-) So I've redone it as individual patches, and credited Mark for the patches where his code is substantially the same. It's not a bad way to do it; his patch had some bugs and my patches had some bugs. Hopefully all our bugs were different from each other. And hopefully Mark likes all the changes I made to his code! This patch (of 23): If we can't read the buffer, be sure to unlock the page before returning.
- CVE-2024-58002:
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Remove dangling pointers When an async control is written, we copy a pointer to the file handle that started the operation. That pointer will be used when the device is done. Which could be anytime in the future. If the user closes that file descriptor, its structure will be freed, and there will be one dangling pointer per pending async control, that the driver will try to use. Clean all the dangling pointers during release(). To avoid adding a performance penalty in the most common case (no async operation), a counter has been introduced with some logic to make sure that it is properly handled.
- CVE-2024-58005:
In the Linux kernel, the following vulnerability has been resolved: tpm: Change to kvalloc() in eventlog/acpi.c The following failure was reported on HPE ProLiant D320: [ 10.693310][ T1] tpm_tis STM0925:00: 2.0 TPM (device-id 0x3, rev-id 0) [ 10.848132][ T1] ------------[ cut here ]------------ [ 10.853559][ T1] WARNING: CPU: 59 PID: 1 at mm/page_alloc.c:4727 __alloc_pages_noprof+0x2ca/0x330 [ 10.862827][ T1] Modules linked in: [ 10.866671][ T1] CPU: 59 UID: 0 PID: 1 Comm: swapper/0 Not tainted 6.12.0-lp155.2.g52785e2-default #1 openSUSE Tumbleweed (unreleased) 588cd98293a7c9eba9013378d807364c088c9375 [ 10.882741][ T1] Hardware name: HPE ProLiant DL320 Gen12/ProLiant DL320 Gen12, BIOS 1.20 10/28/2024 [ 10.892170][ T1] RIP: 0010:__alloc_pages_noprof+0x2ca/0x330 [ 10.898103][ T1] Code: 24 08 e9 4a fe ff ff e8 34 36 fa ff e9 88 fe ff ff 83 fe 0a 0f 86 b3 fd ff ff 80 3d 01 e7 ce 01 00 75 09 c6 05 f8 e6 ce 01 01 <0f> 0b 45 31 ff e9 e5 fe ff ff f7 c2 00 00 08 00 75 42 89 d9 80 e1 [ 10.917750][ T1] RSP: 0000:ffffb7cf40077980 EFLAGS: 00010246 [ 10.923777][ T1] RAX: 0000000000000000 RBX: 0000000000040cc0 RCX: 0000000000000000 [ 10.931727][ T1] RDX: 0000000000000000 RSI: 000000000000000c RDI: 0000000000040cc0 The above transcript shows that ACPI pointed a 16 MiB buffer for the log events because RSI maps to the 'order' parameter of __alloc_pages_noprof(). Address the bug by moving from devm_kmalloc() to devm_add_action() and kvmalloc() and devm_add_action().
- CVE-2024-58006:
In the Linux kernel, the following vulnerability has been resolved: PCI: dwc: ep: Prevent changing BAR size/flags in pci_epc_set_bar() In commit 4284c88fff0e ("PCI: designware-ep: Allow pci_epc_set_bar() update inbound map address") set_bar() was modified to support dynamically changing the backing physical address of a BAR that was already configured. This means that set_bar() can be called twice, without ever calling clear_bar() (as calling clear_bar() would clear the BAR's PCI address assigned by the host). This can only be done if the new BAR size/flags does not differ from the existing BAR configuration. Add these missing checks. If we allow set_bar() to set e.g. a new BAR size that differs from the existing BAR size, the new address translation range will be smaller than the BAR size already determined by the host, which would mean that a read past the new BAR size would pass the iATU untranslated, which could allow the host to read memory not belonging to the new struct pci_epf_bar. While at it, add comments which clarifies the support for dynamically changing the physical address of a BAR. (Which was also missing.)
- CVE-2024-58007:
In the Linux kernel, the following vulnerability has been resolved: soc: qcom: socinfo: Avoid out of bounds read of serial number On MSM8916 devices, the serial number exposed in sysfs is constant and does not change across individual devices. It's always: db410c:/sys/devices/soc0$ cat serial_number 2644893864 The firmware used on MSM8916 exposes SOCINFO_VERSION(0, 8), which does not have support for the serial_num field in the socinfo struct. There is an existing check to avoid exposing the serial number in that case, but it's not correct: When checking the item_size returned by SMEM, we need to make sure the *end* of the serial_num is within bounds, instead of comparing with the *start* offset. The serial_number currently exposed on MSM8916 devices is just an out of bounds read of whatever comes after the socinfo struct in SMEM. Fix this by changing offsetof() to offsetofend(), so that the size of the field is also taken into account.
- CVE-2024-58009:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: L2CAP: handle NULL sock pointer in l2cap_sock_alloc A NULL sock pointer is passed into l2cap_sock_alloc() when it is called from l2cap_sock_new_connection_cb() and the error handling paths should also be aware of it. Seemingly a more elegant solution would be to swap bt_sock_alloc() and l2cap_chan_create() calls since they are not interdependent to that moment but then l2cap_chan_create() adds the soon to be deallocated and still dummy-initialized channel to the global list accessible by many L2CAP paths. The channel would be removed from the list in short period of time but be a bit more straight-forward here and just check for NULL instead of changing the order of function calls. Found by Linux Verification Center (linuxtesting.org) with SVACE static analysis tool.
- CVE-2024-58010:
In the Linux kernel, the following vulnerability has been resolved: binfmt_flat: Fix integer overflow bug on 32 bit systems Most of these sizes and counts are capped at 256MB so the math doesn't result in an integer overflow. The "relocs" count needs to be checked as well. Otherwise on 32bit systems the calculation of "full_data" could be wrong. full_data = data_len + relocs * sizeof(unsigned long);
- CVE-2024-58011:
In the Linux kernel, the following vulnerability has been resolved: platform/x86: int3472: Check for adev == NULL Not all devices have an ACPI companion fwnode, so adev might be NULL. This can e.g. (theoretically) happen when a user manually binds one of the int3472 drivers to another i2c/platform device through sysfs. Add a check for adev not being set and return -ENODEV in that case to avoid a possible NULL pointer deref in skl_int3472_get_acpi_buffer().
- CVE-2024-58012:
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: Intel: hda-dai: Ensure DAI widget is valid during params Each cpu DAI should associate with a widget. However, the topology might not create the right number of DAI widgets for aggregated amps. And it will cause NULL pointer deference. Check that the DAI widget associated with the CPU DAI is valid to prevent NULL pointer deference due to missing DAI widgets in topologies with aggregated amps.
- CVE-2024-58013:
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: MGMT: Fix slab-use-after-free Read in mgmt_remove_adv_monitor_sync This fixes the following crash: ================================================================== BUG: KASAN: slab-use-after-free in mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 Read of size 8 at addr ffff88814128f898 by task kworker/u9:4/5961 CPU: 1 UID: 0 PID: 5961 Comm: kworker/u9:4 Not tainted 6.12.0-syzkaller-10684-gf1cd565ce577 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Workqueue: hci0 hci_cmd_sync_work Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 mgmt_remove_adv_monitor_sync+0x3a/0xd0 net/bluetooth/mgmt.c:5543 hci_cmd_sync_work+0x22b/0x400 net/bluetooth/hci_sync.c:332 process_one_work kernel/workqueue.c:3229 [inline] process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310 worker_thread+0x870/0xd30 kernel/workqueue.c:3391 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 16026: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314 kmalloc_noprof include/linux/slab.h:901 [inline] kzalloc_noprof include/linux/slab.h:1037 [inline] mgmt_pending_new+0x65/0x250 net/bluetooth/mgmt_util.c:269 mgmt_pending_add+0x36/0x120 net/bluetooth/mgmt_util.c:296 remove_adv_monitor+0x102/0x1b0 net/bluetooth/mgmt.c:5568 hci_mgmt_cmd+0xc47/0x11d0 net/bluetooth/hci_sock.c:1712 hci_sock_sendmsg+0x7b8/0x11c0 net/bluetooth/hci_sock.c:1832 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 sock_write_iter+0x2d7/0x3f0 net/socket.c:1147 new_sync_write fs/read_write.c:586 [inline] vfs_write+0xaeb/0xd30 fs/read_write.c:679 ksys_write+0x18f/0x2b0 fs/read_write.c:731 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 16022: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2338 [inline] slab_free mm/slub.c:4598 [inline] kfree+0x196/0x420 mm/slub.c:4746 mgmt_pending_foreach+0xd1/0x130 net/bluetooth/mgmt_util.c:259 __mgmt_power_off+0x183/0x430 net/bluetooth/mgmt.c:9550 hci_dev_close_sync+0x6c4/0x11c0 net/bluetooth/hci_sync.c:5208 hci_dev_do_close net/bluetooth/hci_core.c:483 [inline] hci_dev_close+0x112/0x210 net/bluetooth/hci_core.c:508 sock_do_ioctl+0x158/0x460 net/socket.c:1209 sock_ioctl+0x626/0x8e0 net/socket.c:1328 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
- CVE-2024-58014:
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmsmac: add gain range check to wlc_phy_iqcal_gainparams_nphy() In 'wlc_phy_iqcal_gainparams_nphy()', add gain range check to WARN() instead of possible out-of-bounds 'tbl_iqcal_gainparams_nphy' access. Compile tested only. Found by Linux Verification Center (linuxtesting.org) with SVACE.
- CVE-2024-58016:
In the Linux kernel, the following vulnerability has been resolved: safesetid: check size of policy writes syzbot attempts to write a buffer with a large size to a sysfs entry with writes handled by handle_policy_update(), triggering a warning in kmalloc. Check the size specified for write buffers before allocating. [PM: subject tweak]
- CVE-2024-58017:
In the Linux kernel, the following vulnerability has been resolved: printk: Fix signed integer overflow when defining LOG_BUF_LEN_MAX Shifting 1 << 31 on a 32-bit int causes signed integer overflow, which leads to undefined behavior. To prevent this, cast 1 to u32 before performing the shift, ensuring well-defined behavior. This change explicitly avoids any potential overflow by ensuring that the shift occurs on an unsigned 32-bit integer.
- CVE-2024-58020:
In the Linux kernel, the following vulnerability has been resolved: HID: multitouch: Add NULL check in mt_input_configured devm_kasprintf() can return a NULL pointer on failure,but this returned value in mt_input_configured() is not checked. Add NULL check in mt_input_configured(), to handle kernel NULL pointer dereference error.
- CVE-2024-58034:
In the Linux kernel, the following vulnerability has been resolved: memory: tegra20-emc: fix an OF node reference bug in tegra_emc_find_node_by_ram_code() As of_find_node_by_name() release the reference of the argument device node, tegra_emc_find_node_by_ram_code() releases some device nodes while still in use, resulting in possible UAFs. According to the bindings and the in-tree DTS files, the "emc-tables" node is always device's child node with the property "nvidia,use-ram-code", and the "lpddr2" node is a child of the "emc-tables" node. Thus utilize the for_each_child_of_node() macro and of_get_child_by_name() instead of of_find_node_by_name() to simplify the code. This bug was found by an experimental verification tool that I am developing. [krzysztof: applied v1, adjust the commit msg to incorporate v2 parts]
- CVE-2024-58051:
In the Linux kernel, the following vulnerability has been resolved: ipmi: ipmb: Add check devm_kasprintf() returned value devm_kasprintf() can return a NULL pointer on failure but this returned value is not checked.
- CVE-2024-58052:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix potential NULL pointer dereference in atomctrl_get_smc_sclk_range_table The function atomctrl_get_smc_sclk_range_table() does not check the return value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to retrieve SMU_Info table, it returns NULL which is later dereferenced. Found by Linux Verification Center (linuxtesting.org) with SVACE. In practice this should never happen as this code only gets called on polaris chips and the vbios data table will always be present on those chips.
- CVE-2024-58053:
In the Linux kernel, the following vulnerability has been resolved: rxrpc: Fix handling of received connection abort Fix the handling of a connection abort that we've received. Though the abort is at the connection level, it needs propagating to the calls on that connection. Whilst the propagation bit is performed, the calls aren't then woken up to go and process their termination, and as no further input is forthcoming, they just hang. Also add some tracing for the logging of connection aborts.
- CVE-2024-58054:
In the Linux kernel, the following vulnerability has been resolved: staging: media: max96712: fix kernel oops when removing module The following kernel oops is thrown when trying to remove the max96712 module: Unable to handle kernel paging request at virtual address 00007375746174db Mem abort info: ESR = 0x0000000096000004 EC = 0x25: DABT (current EL), IL = 32 bits SET = 0, FnV = 0 EA = 0, S1PTW = 0 FSC = 0x04: level 0 translation fault Data abort info: ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 CM = 0, WnR = 0, TnD = 0, TagAccess = 0 GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af89000 [00007375746174db] pgd=0000000000000000, p4d=0000000000000000 Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP Modules linked in: crct10dif_ce polyval_ce mxc_jpeg_encdec flexcan snd_soc_fsl_sai snd_soc_fsl_asoc_card snd_soc_fsl_micfil dwc_mipi_csi2 imx_csi_formatter polyval_generic v4l2_jpeg imx_pcm_dma can_dev snd_soc_imx_audmux snd_soc_wm8962 snd_soc_imx_card snd_soc_fsl_utils max96712(C-) rpmsg_ctrl rpmsg_char pwm_fan fuse [last unloaded: imx8_isi] CPU: 0 UID: 0 PID: 754 Comm: rmmod Tainted: G C 6.12.0-rc6-06364-g327fec852c31 #17 Tainted: [C]=CRAP Hardware name: NXP i.MX95 19X19 board (DT) pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : led_put+0x1c/0x40 lr : v4l2_subdev_put_privacy_led+0x48/0x58 sp : ffff80008699bbb0 x29: ffff80008699bbb0 x28: ffff00008ac233c0 x27: 0000000000000000 x26: 0000000000000000 x25: 0000000000000000 x24: 0000000000000000 x23: ffff000080cf1170 x22: ffff00008b53bd00 x21: ffff8000822ad1c8 x20: ffff000080ff5c00 x19: ffff00008b53be40 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 x14: 0000000000000004 x13: ffff0000800f8010 x12: 0000000000000000 x11: ffff000082acf5c0 x10: ffff000082acf478 x9 : ffff0000800f8010 x8 : 0101010101010101 x7 : 7f7f7f7f7f7f7f7f x6 : fefefeff6364626d x5 : 8080808000000000 x4 : 0000000000000020 x3 : 00000000553a3dc1 x2 : ffff00008ac233c0 x1 : ffff00008ac233c0 x0 : ff00737574617473 Call trace: led_put+0x1c/0x40 v4l2_subdev_put_privacy_led+0x48/0x58 v4l2_async_unregister_subdev+0x2c/0x1a4 max96712_remove+0x1c/0x38 [max96712] i2c_device_remove+0x2c/0x9c device_remove+0x4c/0x80 device_release_driver_internal+0x1cc/0x228 driver_detach+0x4c/0x98 bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 i2c_del_driver+0x54/0x64 max96712_i2c_driver_exit+0x18/0x1d0 [max96712] __arm64_sys_delete_module+0x1a4/0x290 invoke_syscall+0x48/0x10c el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xd8 el0t_64_sync_handler+0x120/0x12c el0t_64_sync+0x190/0x194 Code: f9000bf3 aa0003f3 f9402800 f9402000 (f9403400) ---[ end trace 0000000000000000 ]--- This happens because in v4l2_i2c_subdev_init(), the i2c_set_cliendata() is called again and the data is overwritten to point to sd, instead of priv. So, in remove(), the wrong pointer is passed to v4l2_async_unregister_subdev(), leading to a crash.
- CVE-2024-58055:
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_tcm: Don't free command immediately Don't prematurely free the command. Wait for the status completion of the sense status. It can be freed then. Otherwise we will double-free the command.
- CVE-2024-58056:
In the Linux kernel, the following vulnerability has been resolved: remoteproc: core: Fix ida_free call while not allocated In the rproc_alloc() function, on error, put_device(&rproc->dev) is called, leading to the call of the rproc_type_release() function. An error can occurs before ida_alloc is called. In such case in rproc_type_release(), the condition (rproc->index >= 0) is true as rproc->index has been initialized to 0. ida_free() is called reporting a warning: [ 4.181906] WARNING: CPU: 1 PID: 24 at lib/idr.c:525 ida_free+0x100/0x164 [ 4.186378] stm32-display-dsi 5a000000.dsi: Fixed dependency cycle(s) with /soc/dsi@5a000000/panel@0 [ 4.188854] ida_free called for id=0 which is not allocated. [ 4.198256] mipi-dsi 5a000000.dsi.0: Fixed dependency cycle(s) with /soc/dsi@5a000000 [ 4.203556] Modules linked in: panel_orisetech_otm8009a dw_mipi_dsi_stm(+) gpu_sched dw_mipi_dsi stm32_rproc stm32_crc32 stm32_ipcc(+) optee(+) [ 4.224307] CPU: 1 UID: 0 PID: 24 Comm: kworker/u10:0 Not tainted 6.12.0 #442 [ 4.231481] Hardware name: STM32 (Device Tree Support) [ 4.236627] Workqueue: events_unbound deferred_probe_work_func [ 4.242504] Call trace: [ 4.242522] unwind_backtrace from show_stack+0x10/0x14 [ 4.250218] show_stack from dump_stack_lvl+0x50/0x64 [ 4.255274] dump_stack_lvl from __warn+0x80/0x12c [ 4.260134] __warn from warn_slowpath_fmt+0x114/0x188 [ 4.265199] warn_slowpath_fmt from ida_free+0x100/0x164 [ 4.270565] ida_free from rproc_type_release+0x38/0x60 [ 4.275832] rproc_type_release from device_release+0x30/0xa0 [ 4.281601] device_release from kobject_put+0xc4/0x294 [ 4.286762] kobject_put from rproc_alloc.part.0+0x208/0x28c [ 4.292430] rproc_alloc.part.0 from devm_rproc_alloc+0x80/0xc4 [ 4.298393] devm_rproc_alloc from stm32_rproc_probe+0xd0/0x844 [stm32_rproc] [ 4.305575] stm32_rproc_probe [stm32_rproc] from platform_probe+0x5c/0xbc Calling ida_alloc earlier in rproc_alloc ensures that the rproc->index is properly set.
- CVE-2024-58058:
In the Linux kernel, the following vulnerability has been resolved: ubifs: skip dumping tnc tree when zroot is null Clearing slab cache will free all znode in memory and make c->zroot.znode = NULL, then dumping tnc tree will access c->zroot.znode which cause null pointer dereference.
- CVE-2024-58061:
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: prohibit deactivating all links In the internal API this calls this is a WARN_ON, but that should remain since internally we want to know about bugs that may cause this. Prevent deactivating all links in the debugfs write directly.
- CVE-2024-58063:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: fix memory leaks and invalid access at probe error path Deinitialize at reverse order when probe fails. When init_sw_vars fails, rtl_deinit_core should not be called, specially now that it destroys the rtl_wq workqueue. And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be leaked. Remove pci_set_drvdata call as it will already be cleaned up by the core driver code and could lead to memory leaks too. cf. commit 8d450935ae7f ("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory").
- CVE-2024-58068:
In the Linux kernel, the following vulnerability has been resolved: OPP: fix dev_pm_opp_find_bw_*() when bandwidth table not initialized If a driver calls dev_pm_opp_find_bw_ceil/floor() the retrieve bandwidth from the OPP table but the bandwidth table was not created because the interconnect properties were missing in the OPP consumer node, the kernel will crash with: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000004 ... pc : _read_bw+0x8/0x10 lr : _opp_table_find_key+0x9c/0x174 ... Call trace: _read_bw+0x8/0x10 (P) _opp_table_find_key+0x9c/0x174 (L) _find_key+0x98/0x168 dev_pm_opp_find_bw_ceil+0x50/0x88 ... In order to fix the crash, create an assert function to check if the bandwidth table was created before trying to get a bandwidth with _read_bw().
- CVE-2024-58069:
In the Linux kernel, the following vulnerability has been resolved: rtc: pcf85063: fix potential OOB write in PCF85063 NVMEM read The nvmem interface supports variable buffer sizes, while the regmap interface operates with fixed-size storage. If an nvmem client uses a buffer size less than 4 bytes, regmap_read will write out of bounds as it expects the buffer to point at an unsigned int. Fix this by using an intermediary unsigned int to hold the value.
- CVE-2024-58071:
In the Linux kernel, the following vulnerability has been resolved: team: prevent adding a device which is already a team device lower Prevent adding a device which is already a team device lower, e.g. adding veth0 if vlan1 was already added and veth0 is a lower of vlan1. This is not useful in practice and can lead to recursive locking: $ ip link add veth0 type veth peer name veth1 $ ip link set veth0 up $ ip link set veth1 up $ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1 $ ip link add team0 type team $ ip link set veth0.1 down $ ip link set veth0.1 master team0 team0: Port device veth0.1 added $ ip link set veth0 down $ ip link set veth0 master team0 ============================================ WARNING: possible recursive locking detected 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted -------------------------------------------- ip/7684 is trying to acquire lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) but task is already holding lock: ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977) other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(team->team_lock_key); lock(team->team_lock_key); *** DEADLOCK *** May be due to missing lock nesting notation 2 locks held by ip/7684: stack backtrace: CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:122) print_deadlock_bug.cold (kernel/locking/lockdep.c:3040) __lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226) ? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548) lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2)) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? lock_acquire (kernel/locking/lockdep.c:5822) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) __mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) ? fib_sync_up (net/ipv4/fib_semantics.c:2167) ? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) __dev_notify_flags (net/core/dev.c:8993) ? __dev_change_flags (net/core/dev.c:8975) dev_change_flags (net/core/dev.c:9027) vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470) ? br_device_event (net/bridge/br.c:143) notifier_call_chain (kernel/notifier.c:85) call_netdevice_notifiers_info (net/core/dev.c:1996) dev_open (net/core/dev.c:1519 net/core/dev.c:1505) team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977) ? __pfx_team_add_slave (drivers/net/team/team_core.c:1972) do_set_master (net/core/rtnetlink.c:2917) do_setlink.isra.0 (net/core/rtnetlink.c:3117)
- CVE-2024-58072:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: remove unused check_buddy_priv Commit 2461c7d60f9f ("rtlwifi: Update header file") introduced a global list of private data structures. Later on, commit 26634c4b1868 ("rtlwifi Modify existing bits to match vendor version 2013.02.07") started adding the private data to that list at probe time and added a hook, check_buddy_priv to find the private data from a similar device. However, that function was never used. Besides, though there is a lock for that list, it is never used. And when the probe fails, the private data is never removed from the list. This would cause a second probe to access freed memory. Remove the unused hook, structures and members, which will prevent the potential race condition on the list and its corruption during a second probe when probe fails.
- CVE-2024-58076:
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: gcc-sm6350: Add missing parent_map for two clocks If a clk_rcg2 has a parent, it should also have parent_map defined, otherwise we'll get a NULL pointer dereference when calling clk_set_rate like the following: [ 3.388105] Call trace: [ 3.390664] qcom_find_src_index+0x3c/0x70 (P) [ 3.395301] qcom_find_src_index+0x1c/0x70 (L) [ 3.399934] _freq_tbl_determine_rate+0x48/0x100 [ 3.404753] clk_rcg2_determine_rate+0x1c/0x28 [ 3.409387] clk_core_determine_round_nolock+0x58/0xe4 [ 3.421414] clk_core_round_rate_nolock+0x48/0xfc [ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc [ 3.444483] clk_core_set_rate_nolock+0x8c/0x300 [ 3.455886] clk_set_rate+0x38/0x14c Add the parent_map property for two clocks where it's missing and also un-inline the parent_data as well to keep the matching parent_map and parent_data together.
- CVE-2024-58077:
In the Linux kernel, the following vulnerability has been resolved: ASoC: soc-pcm: don't use soc_pcm_ret() on .prepare callback commit 1f5664351410 ("ASoC: lower "no backend DAIs enabled for ... Port" log severity") ignores -EINVAL error message on common soc_pcm_ret(). It is used from many functions, ignoring -EINVAL is over-kill. The reason why -EINVAL was ignored was it really should only be used upon invalid parameters coming from userspace and in that case we don't want to log an error since we do not want to give userspace a way to do a denial-of-service attack on the syslog / diskspace. So don't use soc_pcm_ret() on .prepare callback is better idea.
- CVE-2024-58079:
In the Linux kernel, the following vulnerability has been resolved: media: uvcvideo: Fix crash during unbind if gpio unit is in use We used the wrong device for the device managed functions. We used the usb device, when we should be using the interface device. If we unbind the driver from the usb interface, the cleanup functions are never called. In our case, the IRQ is never disabled. If an IRQ is triggered, it will try to access memory sections that are already free, causing an OOPS. We cannot use the function devm_request_threaded_irq here. The devm_* clean functions may be called after the main structure is released by uvc_delete. Luckily this bug has small impact, as it is only affected by devices with gpio units and the user has to unbind the device, a disconnect will not trigger this error.
- CVE-2024-58080:
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: dispcc-sm6350: Add missing parent_map for a clock If a clk_rcg2 has a parent, it should also have parent_map defined, otherwise we'll get a NULL pointer dereference when calling clk_set_rate like the following: [ 3.388105] Call trace: [ 3.390664] qcom_find_src_index+0x3c/0x70 (P) [ 3.395301] qcom_find_src_index+0x1c/0x70 (L) [ 3.399934] _freq_tbl_determine_rate+0x48/0x100 [ 3.404753] clk_rcg2_determine_rate+0x1c/0x28 [ 3.409387] clk_core_determine_round_nolock+0x58/0xe4 [ 3.421414] clk_core_round_rate_nolock+0x48/0xfc [ 3.432974] clk_core_round_rate_nolock+0xd0/0xfc [ 3.444483] clk_core_set_rate_nolock+0x8c/0x300 [ 3.455886] clk_set_rate+0x38/0x14c Add the parent_map property for the clock where it's missing and also un-inline the parent_data as well to keep the matching parent_map and parent_data together.
- CVE-2024-58083:
In the Linux kernel, the following vulnerability has been resolved: KVM: Explicitly verify target vCPU is online in kvm_get_vcpu() Explicitly verify the target vCPU is fully online _prior_ to clamping the index in kvm_get_vcpu(). If the index is "bad", the nospec clamping will generate '0', i.e. KVM will return vCPU0 instead of NULL. In practice, the bug is unlikely to cause problems, as it will only come into play if userspace or the guest is buggy or misbehaving, e.g. KVM may send interrupts to vCPU0 instead of dropping them on the floor. However, returning vCPU0 when it shouldn't exist per online_vcpus is problematic now that KVM uses an xarray for the vCPUs array, as KVM needs to insert into the xarray before publishing the vCPU to userspace (see commit c5b077549136 ("KVM: Convert the kvm->vcpus array to a xarray")), i.e. before vCPU creation is guaranteed to succeed. As a result, incorrectly providing access to vCPU0 will trigger a use-after-free if vCPU0 is dereferenced and kvm_vm_ioctl_create_vcpu() bails out of vCPU creation due to an error and frees vCPU0. Commit afb2acb2e3a3 ("KVM: Fix vcpu_array[0] races") papered over that issue, but in doing so introduced an unsolvable teardown conundrum. Preventing accesses to vCPU0 before it's fully online will allow reverting commit afb2acb2e3a3, without re-introducing the vcpu_array[0] UAF race.
- CVE-2024-58085:
In the Linux kernel, the following vulnerability has been resolved: tomoyo: don't emit warning in tomoyo_write_control() syzbot is reporting too large allocation warning at tomoyo_write_control(), for one can write a very very long line without new line character. To fix this warning, I use __GFP_NOWARN rather than checking for KMALLOC_MAX_SIZE, for practically a valid line should be always shorter than 32KB where the "too small to fail" memory-allocation rule applies. One might try to write a valid line that is longer than 32KB, but such request will likely fail with -ENOMEM. Therefore, I feel that separately returning -EINVAL when a line is longer than KMALLOC_MAX_SIZE is redundant. There is no need to distinguish over-32KB and over-KMALLOC_MAX_SIZE.
- CVE-2024-58086:
In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Stop active perfmon if it is being destroyed If the active performance monitor (`v3d->active_perfmon`) is being destroyed, stop it first. Currently, the active perfmon is not stopped during destruction, leaving the `v3d->active_perfmon` pointer stale. This can lead to undefined behavior and instability. This patch ensures that the active perfmon is stopped before being destroyed, aligning with the behavior introduced in commit 7d1fd3638ee3 ("drm/v3d: Stop the active perfmon before being destroyed").
- CVE-2025-21634:
In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: remove kernfs active break A warning was found: WARNING: CPU: 10 PID: 3486953 at fs/kernfs/file.c:828 CPU: 10 PID: 3486953 Comm: rmdir Kdump: loaded Tainted: G RIP: 0010:kernfs_should_drain_open_files+0x1a1/0x1b0 RSP: 0018:ffff8881107ef9e0 EFLAGS: 00010202 RAX: 0000000080000002 RBX: ffff888154738c00 RCX: dffffc0000000000 RDX: 0000000000000007 RSI: 0000000000000004 RDI: ffff888154738c04 RBP: ffff888154738c04 R08: ffffffffaf27fa15 R09: ffffed102a8e7180 R10: ffff888154738c07 R11: 0000000000000000 R12: ffff888154738c08 R13: ffff888750f8c000 R14: ffff888750f8c0e8 R15: ffff888154738ca0 FS: 00007f84cd0be740(0000) GS:ffff8887ddc00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000555f9fbe00c8 CR3: 0000000153eec001 CR4: 0000000000370ee0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: kernfs_drain+0x15e/0x2f0 __kernfs_remove+0x165/0x300 kernfs_remove_by_name_ns+0x7b/0xc0 cgroup_rm_file+0x154/0x1c0 cgroup_addrm_files+0x1c2/0x1f0 css_clear_dir+0x77/0x110 kill_css+0x4c/0x1b0 cgroup_destroy_locked+0x194/0x380 cgroup_rmdir+0x2a/0x140 It can be explained by: rmdir echo 1 > cpuset.cpus kernfs_fop_write_iter // active=0 cgroup_rm_file kernfs_remove_by_name_ns kernfs_get_active // active=1 __kernfs_remove // active=0x80000002 kernfs_drain cpuset_write_resmask wait_event //waiting (active == 0x80000001) kernfs_break_active_protection // active = 0x80000001 // continue kernfs_unbreak_active_protection // active = 0x80000002 ... kernfs_should_drain_open_files // warning occurs kernfs_put_active This warning is caused by 'kernfs_break_active_protection' when it is writing to cpuset.cpus, and the cgroup is removed concurrently. The commit 3a5a6d0c2b03 ("cpuset: don't nest cgroup_mutex inside get_online_cpus()") made cpuset_hotplug_workfn asynchronous, This change involves calling flush_work(), which can create a multiple processes circular locking dependency that involve cgroup_mutex, potentially leading to a deadlock. To avoid deadlock. the commit 76bb5ab8f6e3 ("cpuset: break kernfs active protection in cpuset_write_resmask()") added 'kernfs_break_active_protection' in the cpuset_write_resmask. This could lead to this warning. After the commit 2125c0034c5d ("cgroup/cpuset: Make cpuset hotplug processing synchronous"), the cpuset_write_resmask no longer needs to wait the hotplug to finish, which means that concurrent hotplug and cpuset operations are no longer possible. Therefore, the deadlock doesn't exist anymore and it does not have to 'break active protection' now. To fix this warning, just remove kernfs_break_active_protection operation in the 'cpuset_write_resmask'.
- CVE-2025-21635:
In the Linux kernel, the following vulnerability has been resolved: rds: sysctl: rds_tcp_{rcv,snd}buf: avoid using current->nsproxy As mentioned in a previous commit of this series, using the 'net' structure via 'current' is not recommended for different reasons: - Inconsistency: getting info from the reader's/writer's netns vs only from the opener's netns. - current->nsproxy can be NULL in some cases, resulting in an 'Oops' (null-ptr-deref), e.g. when the current task is exiting, as spotted by syzbot [1] using acct(2). The per-netns structure can be obtained from the table->data using container_of(), then the 'net' one can be retrieved from the listen socket (if available).
- CVE-2025-21645:
In the Linux kernel, the following vulnerability has been resolved: platform/x86/amd/pmc: Only disable IRQ1 wakeup where i8042 actually enabled it Wakeup for IRQ1 should be disabled only in cases where i8042 had actually enabled it, otherwise "wake_depth" for this IRQ will try to drop below zero and there will be an unpleasant WARN() logged: kernel: atkbd serio0: Disabling IRQ1 wakeup source to avoid platform firmware bug kernel: ------------[ cut here ]------------ kernel: Unbalanced IRQ 1 wake disable kernel: WARNING: CPU: 10 PID: 6431 at kernel/irq/manage.c:920 irq_set_irq_wake+0x147/0x1a0 The PMC driver uses DEFINE_SIMPLE_DEV_PM_OPS() to define its dev_pm_ops which sets amd_pmc_suspend_handler() to the .suspend, .freeze, and .poweroff handlers. i8042_pm_suspend(), however, is only set as the .suspend handler. Fix the issue by call PMC suspend handler only from the same set of dev_pm_ops handlers as i8042_pm_suspend(), which currently means just the .suspend handler. To reproduce this issue try hibernating (S4) the machine after a fresh boot without putting it into s2idle first. [ij: edited the commit message.]
- CVE-2025-21649:
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix kernel crash when 1588 is sent on HIP08 devices Currently, HIP08 devices does not register the ptp devices, so the hdev->ptp is NULL. But the tx process would still try to set hardware time stamp info with SKBTX_HW_TSTAMP flag and cause a kernel crash. [ 128.087798] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000018 ... [ 128.280251] pc : hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.286600] lr : hclge_ptp_set_tx_info+0x20/0x140 [hclge] [ 128.292938] sp : ffff800059b93140 [ 128.297200] x29: ffff800059b93140 x28: 0000000000003280 [ 128.303455] x27: ffff800020d48280 x26: ffff0cb9dc814080 [ 128.309715] x25: ffff0cb9cde93fa0 x24: 0000000000000001 [ 128.315969] x23: 0000000000000000 x22: 0000000000000194 [ 128.322219] x21: ffff0cd94f986000 x20: 0000000000000000 [ 128.328462] x19: ffff0cb9d2a166c0 x18: 0000000000000000 [ 128.334698] x17: 0000000000000000 x16: ffffcf1fc523ed24 [ 128.340934] x15: 0000ffffd530a518 x14: 0000000000000000 [ 128.347162] x13: ffff0cd6bdb31310 x12: 0000000000000368 [ 128.353388] x11: ffff0cb9cfbc7070 x10: ffff2cf55dd11e02 [ 128.359606] x9 : ffffcf1f85a212b4 x8 : ffff0cd7cf27dab0 [ 128.365831] x7 : 0000000000000a20 x6 : ffff0cd7cf27d000 [ 128.372040] x5 : 0000000000000000 x4 : 000000000000ffff [ 128.378243] x3 : 0000000000000400 x2 : ffffcf1f85a21294 [ 128.384437] x1 : ffff0cb9db520080 x0 : ffff0cb9db500080 [ 128.390626] Call trace: [ 128.393964] hclge_ptp_set_tx_info+0x2c/0x140 [hclge] [ 128.399893] hns3_nic_net_xmit+0x39c/0x4c4 [hns3] [ 128.405468] xmit_one.constprop.0+0xc4/0x200 [ 128.410600] dev_hard_start_xmit+0x54/0xf0 [ 128.415556] sch_direct_xmit+0xe8/0x634 [ 128.420246] __dev_queue_xmit+0x224/0xc70 [ 128.425101] dev_queue_xmit+0x1c/0x40 [ 128.429608] ovs_vport_send+0xac/0x1a0 [openvswitch] [ 128.435409] do_output+0x60/0x17c [openvswitch] [ 128.440770] do_execute_actions+0x898/0x8c4 [openvswitch] [ 128.446993] ovs_execute_actions+0x64/0xf0 [openvswitch] [ 128.453129] ovs_dp_process_packet+0xa0/0x224 [openvswitch] [ 128.459530] ovs_vport_receive+0x7c/0xfc [openvswitch] [ 128.465497] internal_dev_xmit+0x34/0xb0 [openvswitch] [ 128.471460] xmit_one.constprop.0+0xc4/0x200 [ 128.476561] dev_hard_start_xmit+0x54/0xf0 [ 128.481489] __dev_queue_xmit+0x968/0xc70 [ 128.486330] dev_queue_xmit+0x1c/0x40 [ 128.490856] ip_finish_output2+0x250/0x570 [ 128.495810] __ip_finish_output+0x170/0x1e0 [ 128.500832] ip_finish_output+0x3c/0xf0 [ 128.505504] ip_output+0xbc/0x160 [ 128.509654] ip_send_skb+0x58/0xd4 [ 128.513892] udp_send_skb+0x12c/0x354 [ 128.518387] udp_sendmsg+0x7a8/0x9c0 [ 128.522793] inet_sendmsg+0x4c/0x8c [ 128.527116] __sock_sendmsg+0x48/0x80 [ 128.531609] __sys_sendto+0x124/0x164 [ 128.536099] __arm64_sys_sendto+0x30/0x5c [ 128.540935] invoke_syscall+0x50/0x130 [ 128.545508] el0_svc_common.constprop.0+0x10c/0x124 [ 128.551205] do_el0_svc+0x34/0xdc [ 128.555347] el0_svc+0x20/0x30 [ 128.559227] el0_sync_handler+0xb8/0xc0 [ 128.563883] el0_sync+0x160/0x180
- CVE-2025-21651:
In the Linux kernel, the following vulnerability has been resolved: net: hns3: don't auto enable misc vector Currently, there is a time window between misc irq enabled and service task inited. If an interrupte is reported at this time, it will cause warning like below: [ 16.324639] Call trace: [ 16.324641] __queue_delayed_work+0xb8/0xe0 [ 16.324643] mod_delayed_work_on+0x78/0xd0 [ 16.324655] hclge_errhand_task_schedule+0x58/0x90 [hclge] [ 16.324662] hclge_misc_irq_handle+0x168/0x240 [hclge] [ 16.324666] __handle_irq_event_percpu+0x64/0x1e0 [ 16.324667] handle_irq_event+0x80/0x170 [ 16.324670] handle_fasteoi_edge_irq+0x110/0x2bc [ 16.324671] __handle_domain_irq+0x84/0xfc [ 16.324673] gic_handle_irq+0x88/0x2c0 [ 16.324674] el1_irq+0xb8/0x140 [ 16.324677] arch_cpu_idle+0x18/0x40 [ 16.324679] default_idle_call+0x5c/0x1bc [ 16.324682] cpuidle_idle_call+0x18c/0x1c4 [ 16.324684] do_idle+0x174/0x17c [ 16.324685] cpu_startup_entry+0x30/0x6c [ 16.324687] secondary_start_kernel+0x1a4/0x280 [ 16.324688] ---[ end trace 6aa0bff672a964aa ]--- So don't auto enable misc vector when request irq..
- CVE-2025-21656:
In the Linux kernel, the following vulnerability has been resolved: hwmon: (drivetemp) Fix driver producing garbage data when SCSI errors occur scsi_execute_cmd() function can return both negative (linux codes) and positive (scsi_cmnd result field) error codes. Currently the driver just passes error codes of scsi_execute_cmd() to hwmon core, which is incorrect because hwmon only checks for negative error codes. This leads to hwmon reporting uninitialized data to userspace in case of SCSI errors (for example if the disk drive was disconnected). This patch checks scsi_execute_cmd() output and returns -EIO if it's error code is positive. [groeck: Avoid inline variable declaration for portability]
- CVE-2025-21658:
In the Linux kernel, the following vulnerability has been resolved: btrfs: avoid NULL pointer dereference if no valid extent tree [BUG] Syzbot reported a crash with the following call trace: BTRFS info (device loop0): scrub: started on devid 1 BUG: kernel NULL pointer dereference, address: 0000000000000208 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 106e70067 P4D 106e70067 PUD 107143067 PMD 0 Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI CPU: 1 UID: 0 PID: 689 Comm: repro Kdump: loaded Tainted: G O 6.13.0-rc4-custom+ #206 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022 RIP: 0010:find_first_extent_item+0x26/0x1f0 [btrfs] Call Trace: <TASK> scrub_find_fill_first_stripe+0x13d/0x3b0 [btrfs] scrub_simple_mirror+0x175/0x260 [btrfs] scrub_stripe+0x5d4/0x6c0 [btrfs] scrub_chunk+0xbb/0x170 [btrfs] scrub_enumerate_chunks+0x2f4/0x5f0 [btrfs] btrfs_scrub_dev+0x240/0x600 [btrfs] btrfs_ioctl+0x1dc8/0x2fa0 [btrfs] ? do_sys_openat2+0xa5/0xf0 __x64_sys_ioctl+0x97/0xc0 do_syscall_64+0x4f/0x120 entry_SYSCALL_64_after_hwframe+0x76/0x7e </TASK> [CAUSE] The reproducer is using a corrupted image where extent tree root is corrupted, thus forcing to use "rescue=all,ro" mount option to mount the image. Then it triggered a scrub, but since scrub relies on extent tree to find where the data/metadata extents are, scrub_find_fill_first_stripe() relies on an non-empty extent root. But unfortunately scrub_find_fill_first_stripe() doesn't really expect an NULL pointer for extent root, it use extent_root to grab fs_info and triggered a NULL pointer dereference. [FIX] Add an extra check for a valid extent root at the beginning of scrub_find_fill_first_stripe(). The new error path is introduced by 42437a6386ff ("btrfs: introduce mount option rescue=ignorebadroots"), but that's pretty old, and later commit b979547513ff ("btrfs: scrub: introduce helper to find and fill sector info for a scrub_stripe") changed how we do scrub. So for kernels older than 6.6, the fix will need manual backport.
- CVE-2025-21672:
In the Linux kernel, the following vulnerability has been resolved: afs: Fix merge preference rule failure condition syzbot reported a lock held when returning to userspace[1]. This is because if argc is less than 0 and the function returns directly, the held inode lock is not released. Fix this by store the error in ret and jump to done to clean up instead of returning directly. [dh: Modified Lizhi Xu's original patch to make it honour the error code from afs_split_string()] [1] WARNING: lock held when returning to user space! 6.13.0-rc3-syzkaller-00209-g499551201b5f #0 Not tainted ------------------------------------------------ syz-executor133/5823 is leaving the kernel with locks still held! 1 lock held by syz-executor133/5823: #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: inode_lock include/linux/fs.h:818 [inline] #0: ffff888071cffc00 (&sb->s_type->i_mutex_key#9){++++}-{4:4}, at: afs_proc_addr_prefs_write+0x2bb/0x14e0 fs/afs/addr_prefs.c:388
- CVE-2025-21673:
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix double free of TCP_Server_Info::hostname When shutting down the server in cifs_put_tcp_session(), cifsd thread might be reconnecting to multiple DFS targets before it realizes it should exit the loop, so @server->hostname can't be freed as long as cifsd thread isn't done. Otherwise the following can happen: RIP: 0010:__slab_free+0x223/0x3c0 Code: 5e 41 5f c3 cc cc cc cc 4c 89 de 4c 89 cf 44 89 44 24 08 4c 89 1c 24 e8 fb cf 8e 00 44 8b 44 24 08 4c 8b 1c 24 e9 5f fe ff ff <0f> 0b 41 f7 45 08 00 0d 21 00 0f 85 2d ff ff ff e9 1f ff ff ff 80 RSP: 0018:ffffb26180dbfd08 EFLAGS: 00010246 RAX: ffff8ea34728e510 RBX: ffff8ea34728e500 RCX: 0000000000800068 RDX: 0000000000800068 RSI: 0000000000000000 RDI: ffff8ea340042400 RBP: ffffe112041ca380 R08: 0000000000000001 R09: 0000000000000000 R10: 6170732e31303000 R11: 70726f632e786563 R12: ffff8ea34728e500 R13: ffff8ea340042400 R14: ffff8ea34728e500 R15: 0000000000800068 FS: 0000000000000000(0000) GS:ffff8ea66fd80000(0000) 000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007ffc25376080 CR3: 000000012a2ba001 CR4: PKRU: 55555554 Call Trace: <TASK> ? show_trace_log_lvl+0x1c4/0x2df ? show_trace_log_lvl+0x1c4/0x2df ? __reconnect_target_unlocked+0x3e/0x160 [cifs] ? __die_body.cold+0x8/0xd ? die+0x2b/0x50 ? do_trap+0xce/0x120 ? __slab_free+0x223/0x3c0 ? do_error_trap+0x65/0x80 ? __slab_free+0x223/0x3c0 ? exc_invalid_op+0x4e/0x70 ? __slab_free+0x223/0x3c0 ? asm_exc_invalid_op+0x16/0x20 ? __slab_free+0x223/0x3c0 ? extract_hostname+0x5c/0xa0 [cifs] ? extract_hostname+0x5c/0xa0 [cifs] ? __kmalloc+0x4b/0x140 __reconnect_target_unlocked+0x3e/0x160 [cifs] reconnect_dfs_server+0x145/0x430 [cifs] cifs_handle_standard+0x1ad/0x1d0 [cifs] cifs_demultiplex_thread+0x592/0x730 [cifs] ? __pfx_cifs_demultiplex_thread+0x10/0x10 [cifs] kthread+0xdd/0x100 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x50 </TASK>
- CVE-2025-21676:
In the Linux kernel, the following vulnerability has been resolved: net: fec: handle page_pool_dev_alloc_pages error The fec_enet_update_cbd function calls page_pool_dev_alloc_pages but did not handle the case when it returned NULL. There was a WARN_ON(!new_page) but it would still proceed to use the NULL pointer and then crash. This case does seem somewhat rare but when the system is under memory pressure it can happen. One case where I can duplicate this with some frequency is when writing over a smbd share to a SATA HDD attached to an imx6q. Setting /proc/sys/vm/min_free_kbytes to higher values also seems to solve the problem for my test case. But it still seems wrong that the fec driver ignores the memory allocation error and can crash. This commit handles the allocation error by dropping the current packet.
- CVE-2025-21682:
In the Linux kernel, the following vulnerability has been resolved: eth: bnxt: always recalculate features after XDP clearing, fix null-deref Recalculate features when XDP is detached. Before: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: off [requested on] After: # ip li set dev eth0 xdp obj xdp_dummy.bpf.o sec xdp # ip li set dev eth0 xdp off # ethtool -k eth0 | grep gro rx-gro-hw: on The fact that HW-GRO doesn't get re-enabled automatically is just a minor annoyance. The real issue is that the features will randomly come back during another reconfiguration which just happens to invoke netdev_update_features(). The driver doesn't handle reconfiguring two things at a time very robustly. Starting with commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") we only reconfigure the RSS hash table if the "effective" number of Rx rings has changed. If HW-GRO is enabled "effective" number of rings is 2x what user sees. So if we are in the bad state, with HW-GRO re-enablement "pending" after XDP off, and we lower the rings by / 2 - the HW-GRO rings doing 2x and the ethtool -L doing / 2 may cancel each other out, and the: if (old_rx_rings != bp->hw_resc.resv_rx_rings && condition in __bnxt_reserve_rings() will be false. The RSS map won't get updated, and we'll crash with: BUG: kernel NULL pointer dereference, address: 0000000000000168 RIP: 0010:__bnxt_hwrm_vnic_set_rss+0x13a/0x1a0 bnxt_hwrm_vnic_rss_cfg_p5+0x47/0x180 __bnxt_setup_vnic_p5+0x58/0x110 bnxt_init_nic+0xb72/0xf50 __bnxt_open_nic+0x40d/0xab0 bnxt_open_nic+0x2b/0x60 ethtool_set_channels+0x18c/0x1d0 As we try to access a freed ring. The issue is present since XDP support was added, really, but prior to commit 98ba1d931f61 ("bnxt_en: Fix RSS logic in __bnxt_reserve_rings()") it wasn't causing major issues.
- CVE-2025-21684:
In the Linux kernel, the following vulnerability has been resolved: gpio: xilinx: Convert gpio_lock to raw spinlock irq_chip functions may be called in raw spinlock context. Therefore, we must also use a raw spinlock for our own internal locking. This fixes the following lockdep splat: [ 5.349336] ============================= [ 5.353349] [ BUG: Invalid wait context ] [ 5.357361] 6.13.0-rc5+ #69 Tainted: G W [ 5.363031] ----------------------------- [ 5.367045] kworker/u17:1/44 is trying to lock: [ 5.371587] ffffff88018b02c0 (&chip->gpio_lock){....}-{3:3}, at: xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.380079] other info that might help us debug this: [ 5.385138] context-{5:5} [ 5.387762] 5 locks held by kworker/u17:1/44: [ 5.392123] #0: ffffff8800014958 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3204) [ 5.402260] #1: ffffffc082fcbdd8 (deferred_probe_work){+.+.}-{0:0}, at: process_one_work (kernel/workqueue.c:3205) [ 5.411528] #2: ffffff880172c900 (&dev->mutex){....}-{4:4}, at: __device_attach (drivers/base/dd.c:1006) [ 5.419929] #3: ffffff88039c8268 (request_class#2){+.+.}-{4:4}, at: __setup_irq (kernel/irq/internals.h:156 kernel/irq/manage.c:1596) [ 5.428331] #4: ffffff88039c80c8 (lock_class#2){....}-{2:2}, at: __setup_irq (kernel/irq/manage.c:1614) [ 5.436472] stack backtrace: [ 5.439359] CPU: 2 UID: 0 PID: 44 Comm: kworker/u17:1 Tainted: G W 6.13.0-rc5+ #69 [ 5.448690] Tainted: [W]=WARN [ 5.451656] Hardware name: xlnx,zynqmp (DT) [ 5.455845] Workqueue: events_unbound deferred_probe_work_func [ 5.461699] Call trace: [ 5.464147] show_stack+0x18/0x24 C [ 5.467821] dump_stack_lvl (lib/dump_stack.c:123) [ 5.471501] dump_stack (lib/dump_stack.c:130) [ 5.474824] __lock_acquire (kernel/locking/lockdep.c:4828 kernel/locking/lockdep.c:4898 kernel/locking/lockdep.c:5176) [ 5.478758] lock_acquire (arch/arm64/include/asm/percpu.h:40 kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851 kernel/locking/lockdep.c:5814) [ 5.482429] _raw_spin_lock_irqsave (include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162) [ 5.486797] xgpio_irq_unmask (drivers/gpio/gpio-xilinx.c:433 (discriminator 8)) [ 5.490737] irq_enable (kernel/irq/internals.h:236 kernel/irq/chip.c:170 kernel/irq/chip.c:439 kernel/irq/chip.c:432 kernel/irq/chip.c:345) [ 5.494060] __irq_startup (kernel/irq/internals.h:241 kernel/irq/chip.c:180 kernel/irq/chip.c:250) [ 5.497645] irq_startup (kernel/irq/chip.c:270) [ 5.501143] __setup_irq (kernel/irq/manage.c:1807) [ 5.504728] request_threaded_irq (kernel/irq/manage.c:2208)
- CVE-2025-21693:
In the Linux kernel, the following vulnerability has been resolved: mm: zswap: properly synchronize freeing resources during CPU hotunplug In zswap_compress() and zswap_decompress(), the per-CPU acomp_ctx of the current CPU at the beginning of the operation is retrieved and used throughout. However, since neither preemption nor migration are disabled, it is possible that the operation continues on a different CPU. If the original CPU is hotunplugged while the acomp_ctx is still in use, we run into a UAF bug as some of the resources attached to the acomp_ctx are freed during hotunplug in zswap_cpu_comp_dead() (i.e. acomp_ctx.buffer, acomp_ctx.req, or acomp_ctx.acomp). The problem was introduced in commit 1ec3b5fe6eec ("mm/zswap: move to use crypto_acomp API for hardware acceleration") when the switch to the crypto_acomp API was made. Prior to that, the per-CPU crypto_comp was retrieved using get_cpu_ptr() which disables preemption and makes sure the CPU cannot go away from under us. Preemption cannot be disabled with the crypto_acomp API as a sleepable context is needed. Use the acomp_ctx.mutex to synchronize CPU hotplug callbacks allocating and freeing resources with compression/decompression paths. Make sure that acomp_ctx.req is NULL when the resources are freed. In the compression/decompression paths, check if acomp_ctx.req is NULL after acquiring the mutex (meaning the CPU was offlined) and retry on the new CPU. The initialization of acomp_ctx.mutex is moved from the CPU hotplug callback to the pool initialization where it belongs (where the mutex is allocated). In addition to adding clarity, this makes sure that CPU hotplug cannot reinitialize a mutex that is already locked by compression/decompression. Previously a fix was attempted by holding cpus_read_lock() [1]. This would have caused a potential deadlock as it is possible for code already holding the lock to fall into reclaim and enter zswap (causing a deadlock). A fix was also attempted using SRCU for synchronization, but Johannes pointed out that synchronize_srcu() cannot be used in CPU hotplug notifiers [2]. Alternative fixes that were considered/attempted and could have worked: - Refcounting the per-CPU acomp_ctx. This involves complexity in handling the race between the refcount dropping to zero in zswap_[de]compress() and the refcount being re-initialized when the CPU is onlined. - Disabling migration before getting the per-CPU acomp_ctx [3], but that's discouraged and is a much bigger hammer than needed, and could result in subtle performance issues. [1]https://lkml.kernel.org/20241219212437.2714151-1-yosryahmed@google.com/ [2]https://lkml.kernel.org/20250107074724.1756696-2-yosryahmed@google.com/ [3]https://lkml.kernel.org/20250107222236.2715883-2-yosryahmed@google.com/ [yosryahmed@google.com: remove comment] Link: https://lkml.kernel.org/r/CAJD7tkaxS1wjn+swugt8QCvQ-rVF5RZnjxwPGX17k8x9zSManA@mail.gmail.com
- CVE-2025-21696:
In the Linux kernel, the following vulnerability has been resolved: mm: clear uffd-wp PTE/PMD state on mremap() When mremap()ing a memory region previously registered with userfaultfd as write-protected but without UFFD_FEATURE_EVENT_REMAP, an inconsistency in flag clearing leads to a mismatch between the vma flags (which have uffd-wp cleared) and the pte/pmd flags (which do not have uffd-wp cleared). This mismatch causes a subsequent mprotect(PROT_WRITE) to trigger a warning in page_table_check_pte_flags() due to setting the pte to writable while uffd-wp is still set. Fix this by always explicitly clearing the uffd-wp pte/pmd flags on any such mremap() so that the values are consistent with the existing clearing of VM_UFFD_WP. Be careful to clear the logical flag regardless of its physical form; a PTE bit, a swap PTE bit, or a PTE marker. Cover PTE, huge PMD and hugetlb paths.
- CVE-2025-21700:
In the Linux kernel, the following vulnerability has been resolved: net: sched: Disallow replacing of child qdisc from one parent to another Lion Ackermann was able to create a UAF which can be abused for privilege escalation with the following script Step 1. create root qdisc tc qdisc add dev lo root handle 1:0 drr step2. a class for packet aggregation do demonstrate uaf tc class add dev lo classid 1:1 drr step3. a class for nesting tc class add dev lo classid 1:2 drr step4. a class to graft qdisc to tc class add dev lo classid 1:3 drr step5. tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024 step6. tc qdisc add dev lo parent 1:2 handle 3:0 drr step7. tc class add dev lo classid 3:1 drr step 8. tc qdisc add dev lo parent 3:1 handle 4:0 pfifo step 9. Display the class/qdisc layout tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 limit 1000p qdisc drr 3: dev lo parent 1:2 step10. trigger the bug <=== prevented by this patch tc qdisc replace dev lo parent 1:3 handle 4:0 step 11. Redisplay again the qdiscs/classes tc class ls dev lo class drr 1:1 root leaf 2: quantum 64Kb class drr 1:2 root leaf 3: quantum 64Kb class drr 1:3 root leaf 4: quantum 64Kb class drr 3:1 root leaf 4: quantum 64Kb tc qdisc ls qdisc drr 1: dev lo root refcnt 2 qdisc plug 2: dev lo parent 1:1 qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p qdisc drr 3: dev lo parent 1:2 Observe that a) parent for 4:0 does not change despite the replace request. There can only be one parent. b) refcount has gone up by two for 4:0 and c) both class 1:3 and 3:1 are pointing to it. Step 12. send one packet to plug echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001)) step13. send one packet to the grafted fifo echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003)) step14. lets trigger the uaf tc class delete dev lo classid 1:3 tc class delete dev lo classid 1:1 The semantics of "replace" is for a del/add _on the same node_ and not a delete from one node(3:1) and add to another node (1:3) as in step10. While we could "fix" with a more complex approach there could be consequences to expectations so the patch takes the preventive approach of "disallow such config". Joint work with Lion Ackermann <nnamrec@gmail.com>
- CVE-2025-21701:
In the Linux kernel, the following vulnerability has been resolved: net: avoid race between device unregistration and ethnl ops The following trace can be seen if a device is being unregistered while its number of channels are being modified. DEBUG_LOCKS_WARN_ON(lock->magic != lock) WARNING: CPU: 3 PID: 3754 at kernel/locking/mutex.c:564 __mutex_lock+0xc8a/0x1120 CPU: 3 UID: 0 PID: 3754 Comm: ethtool Not tainted 6.13.0-rc6+ #771 RIP: 0010:__mutex_lock+0xc8a/0x1120 Call Trace: <TASK> ethtool_check_max_channel+0x1ea/0x880 ethnl_set_channels+0x3c3/0xb10 ethnl_default_set_doit+0x306/0x650 genl_family_rcv_msg_doit+0x1e3/0x2c0 genl_rcv_msg+0x432/0x6f0 netlink_rcv_skb+0x13d/0x3b0 genl_rcv+0x28/0x40 netlink_unicast+0x42e/0x720 netlink_sendmsg+0x765/0xc20 __sys_sendto+0x3ac/0x420 __x64_sys_sendto+0xe0/0x1c0 do_syscall_64+0x95/0x180 entry_SYSCALL_64_after_hwframe+0x76/0x7e This is because unregister_netdevice_many_notify might run before the rtnl lock section of ethnl operations, eg. set_channels in the above example. In this example the rss lock would be destroyed by the device unregistration path before being used again, but in general running ethnl operations while dismantle has started is not a good idea. Fix this by denying any operation on devices being unregistered. A check was already there in ethnl_ops_begin, but not wide enough. Note that the same issue cannot be seen on the ioctl version (__dev_ethtool) because the device reference is retrieved from within the rtnl lock section there. Once dismantle started, the net device is unlisted and no reference will be found.
- CVE-2025-21702:
In the Linux kernel, the following vulnerability has been resolved: pfifo_tail_enqueue: Drop new packet when sch->limit == 0 Expected behaviour: In case we reach scheduler's limit, pfifo_tail_enqueue() will drop a packet in scheduler's queue and decrease scheduler's qlen by one. Then, pfifo_tail_enqueue() enqueue new packet and increase scheduler's qlen by one. Finally, pfifo_tail_enqueue() return `NET_XMIT_CN` status code. Weird behaviour: In case we set `sch->limit == 0` and trigger pfifo_tail_enqueue() on a scheduler that has no packet, the 'drop a packet' step will do nothing. This means the scheduler's qlen still has value equal 0. Then, we continue to enqueue new packet and increase scheduler's qlen by one. In summary, we can leverage pfifo_tail_enqueue() to increase qlen by one and return `NET_XMIT_CN` status code. The problem is: Let's say we have two qdiscs: Qdisc_A and Qdisc_B. - Qdisc_A's type must have '->graft()' function to create parent/child relationship. Let's say Qdisc_A's type is `hfsc`. Enqueue packet to this qdisc will trigger `hfsc_enqueue`. - Qdisc_B's type is pfifo_head_drop. Enqueue packet to this qdisc will trigger `pfifo_tail_enqueue`. - Qdisc_B is configured to have `sch->limit == 0`. - Qdisc_A is configured to route the enqueued's packet to Qdisc_B. Enqueue packet through Qdisc_A will lead to: - hfsc_enqueue(Qdisc_A) -> pfifo_tail_enqueue(Qdisc_B) - Qdisc_B->q.qlen += 1 - pfifo_tail_enqueue() return `NET_XMIT_CN` - hfsc_enqueue() check for `NET_XMIT_SUCCESS` and see `NET_XMIT_CN` => hfsc_enqueue() don't increase qlen of Qdisc_A. The whole process lead to a situation where Qdisc_A->q.qlen == 0 and Qdisc_B->q.qlen == 1. Replace 'hfsc' with other type (for example: 'drr') still lead to the same problem. This violate the design where parent's qlen should equal to the sum of its childrens'qlen. Bug impact: This issue can be used for user->kernel privilege escalation when it is reachable.
- CVE-2025-21703:
In the Linux kernel, the following vulnerability has been resolved: netem: Update sch->q.qlen before qdisc_tree_reduce_backlog() qdisc_tree_reduce_backlog() notifies parent qdisc only if child qdisc becomes empty, therefore we need to reduce the backlog of the child qdisc before calling it. Otherwise it would miss the opportunity to call cops->qlen_notify(), in the case of DRR, it resulted in UAF since DRR uses ->qlen_notify() to maintain its active list.
- CVE-2025-21704:
In the Linux kernel, the following vulnerability has been resolved: usb: cdc-acm: Check control transfer buffer size before access If the first fragment is shorter than struct usb_cdc_notification, we can't calculate an expected_size. Log an error and discard the notification instead of reading lengths from memory outside the received data, which can lead to memory corruption when the expected_size decreases between fragments, causing `expected_size - acm->nb_index` to wrap. This issue has been present since the beginning of git history; however, it only leads to memory corruption since commit ea2583529cd1 ("cdc-acm: reassemble fragmented notifications"). A mitigating factor is that acm_ctrl_irq() can only execute after userspace has opened /dev/ttyACM*; but if ModemManager is running, ModemManager will do that automatically depending on the USB device's vendor/product IDs and its other interfaces.
- CVE-2025-21705:
In the Linux kernel, the following vulnerability has been resolved: mptcp: handle fastopen disconnect correctly Syzbot was able to trigger a data stream corruption: WARNING: CPU: 0 PID: 9846 at net/mptcp/protocol.c:1024 __mptcp_clean_una+0xddb/0xff0 net/mptcp/protocol.c:1024 Modules linked in: CPU: 0 UID: 0 PID: 9846 Comm: syz-executor351 Not tainted 6.13.0-rc2-syzkaller-00059-g00a5acdbf398 #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024 RIP: 0010:__mptcp_clean_una+0xddb/0xff0 net/mptcp/protocol.c:1024 Code: fa ff ff 48 8b 4c 24 18 80 e1 07 fe c1 38 c1 0f 8c 8e fa ff ff 48 8b 7c 24 18 e8 e0 db 54 f6 e9 7f fa ff ff e8 e6 80 ee f5 90 <0f> 0b 90 4c 8b 6c 24 40 4d 89 f4 e9 04 f5 ff ff 44 89 f1 80 e1 07 RSP: 0018:ffffc9000c0cf400 EFLAGS: 00010293 RAX: ffffffff8bb0dd5a RBX: ffff888033f5d230 RCX: ffff888059ce8000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc9000c0cf518 R08: ffffffff8bb0d1dd R09: 1ffff110170c8928 R10: dffffc0000000000 R11: ffffed10170c8929 R12: 0000000000000000 R13: ffff888033f5d220 R14: dffffc0000000000 R15: ffff8880592b8000 FS: 00007f6e866496c0(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f6e86f491a0 CR3: 00000000310e6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __mptcp_clean_una_wakeup+0x7f/0x2d0 net/mptcp/protocol.c:1074 mptcp_release_cb+0x7cb/0xb30 net/mptcp/protocol.c:3493 release_sock+0x1aa/0x1f0 net/core/sock.c:3640 inet_wait_for_connect net/ipv4/af_inet.c:609 [inline] __inet_stream_connect+0x8bd/0xf30 net/ipv4/af_inet.c:703 mptcp_sendmsg_fastopen+0x2a2/0x530 net/mptcp/protocol.c:1755 mptcp_sendmsg+0x1884/0x1b10 net/mptcp/protocol.c:1830 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x1a6/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f6e86ebfe69 Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 b1 1f 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007f6e86649168 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f6e86f491b8 RCX: 00007f6e86ebfe69 RDX: 0000000030004001 RSI: 0000000020000080 RDI: 0000000000000003 RBP: 00007f6e86f491b0 R08: 00007f6e866496c0 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 00007f6e86f491bc R13: 000000000000006e R14: 00007ffe445d9420 R15: 00007ffe445d9508 </TASK> The root cause is the bad handling of disconnect() generated internally by the MPTCP protocol in case of connect FASTOPEN errors. Address the issue increasing the socket disconnect counter even on such a case, to allow other threads waiting on the same socket lock to properly error out.
- CVE-2025-21706:
In the Linux kernel, the following vulnerability has been resolved: mptcp: pm: only set fullmesh for subflow endp With the in-kernel path-manager, it is possible to change the 'fullmesh' flag. The code in mptcp_pm_nl_fullmesh() expects to change it only on 'subflow' endpoints, to recreate more or less subflows using the linked address. Unfortunately, the set_flags() hook was a bit more permissive, and allowed 'implicit' endpoints to get the 'fullmesh' flag while it is not allowed before. That's what syzbot found, triggering the following warning: WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 __mark_subflow_endp_available net/mptcp/pm_netlink.c:1496 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_pm_nl_fullmesh net/mptcp/pm_netlink.c:1980 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_nl_set_flags net/mptcp/pm_netlink.c:2003 [inline] WARNING: CPU: 0 PID: 6499 at net/mptcp/pm_netlink.c:1496 mptcp_pm_nl_set_flags+0x974/0xdc0 net/mptcp/pm_netlink.c:2064 Modules linked in: CPU: 0 UID: 0 PID: 6499 Comm: syz.1.413 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0 Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 RIP: 0010:__mark_subflow_endp_available net/mptcp/pm_netlink.c:1496 [inline] RIP: 0010:mptcp_pm_nl_fullmesh net/mptcp/pm_netlink.c:1980 [inline] RIP: 0010:mptcp_nl_set_flags net/mptcp/pm_netlink.c:2003 [inline] RIP: 0010:mptcp_pm_nl_set_flags+0x974/0xdc0 net/mptcp/pm_netlink.c:2064 Code: 01 00 00 49 89 c5 e8 fb 45 e8 f5 e9 b8 fc ff ff e8 f1 45 e8 f5 4c 89 f7 be 03 00 00 00 e8 44 1d 0b f9 eb a0 e8 dd 45 e8 f5 90 <0f> 0b 90 e9 17 ff ff ff 89 d9 80 e1 07 38 c1 0f 8c c9 fc ff ff 48 RSP: 0018:ffffc9000d307240 EFLAGS: 00010293 RAX: ffffffff8bb72e03 RBX: 0000000000000000 RCX: ffff88807da88000 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000 RBP: ffffc9000d307430 R08: ffffffff8bb72cf0 R09: 1ffff1100b842a5e R10: dffffc0000000000 R11: ffffed100b842a5f R12: ffff88801e2e5ac0 R13: ffff88805c214800 R14: ffff88805c2152e8 R15: 1ffff1100b842a5d FS: 00005555619f6500(0000) GS:ffff8880b8600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000020002840 CR3: 00000000247e6000 CR4: 00000000003526f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0xb14/0xec0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2542 genl_rcv+0x28/0x40 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x221/0x270 net/socket.c:726 ____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583 ___sys_sendmsg net/socket.c:2637 [inline] __sys_sendmsg+0x269/0x350 net/socket.c:2669 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f5fe8785d29 Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48 RSP: 002b:00007fff571f5558 EFLAGS: 00000246 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 00007f5fe8975fa0 RCX: 00007f5fe8785d29 RDX: 0000000000000000 RSI: 0000000020000480 RDI: 0000000000000007 RBP: 00007f5fe8801b08 R08: 0000000000000000 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000 R13: 00007f5fe8975fa0 R14: 00007f5fe8975fa0 R15: 000000 ---truncated---
- CVE-2025-21707:
In the Linux kernel, the following vulnerability has been resolved: mptcp: consolidate suboption status MPTCP maintains the received sub-options status is the bitmask carrying the received suboptions and in several bitfields carrying per suboption additional info. Zeroing the bitmask before parsing is not enough to ensure a consistent status, and the MPTCP code has to additionally clear some bitfiled depending on the actually parsed suboption. The above schema is fragile, and syzbot managed to trigger a path where a relevant bitfield is not cleared/initialized: BUG: KMSAN: uninit-value in __mptcp_expand_seq net/mptcp/options.c:1030 [inline] BUG: KMSAN: uninit-value in mptcp_expand_seq net/mptcp/protocol.h:864 [inline] BUG: KMSAN: uninit-value in ack_update_msk net/mptcp/options.c:1060 [inline] BUG: KMSAN: uninit-value in mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 __mptcp_expand_seq net/mptcp/options.c:1030 [inline] mptcp_expand_seq net/mptcp/protocol.h:864 [inline] ack_update_msk net/mptcp/options.c:1060 [inline] mptcp_incoming_options+0x2036/0x3d30 net/mptcp/options.c:1209 tcp_data_queue+0xb4/0x7be0 net/ipv4/tcp_input.c:5233 tcp_rcv_established+0x1061/0x2510 net/ipv4/tcp_input.c:6264 tcp_v4_do_rcv+0x7f3/0x11a0 net/ipv4/tcp_ipv4.c:1916 tcp_v4_rcv+0x51df/0x5750 net/ipv4/tcp_ipv4.c:2351 ip_protocol_deliver_rcu+0x2a3/0x13d0 net/ipv4/ip_input.c:205 ip_local_deliver_finish+0x336/0x500 net/ipv4/ip_input.c:233 NF_HOOK include/linux/netfilter.h:314 [inline] ip_local_deliver+0x21f/0x490 net/ipv4/ip_input.c:254 dst_input include/net/dst.h:460 [inline] ip_rcv_finish+0x4a2/0x520 net/ipv4/ip_input.c:447 NF_HOOK include/linux/netfilter.h:314 [inline] ip_rcv+0xcd/0x380 net/ipv4/ip_input.c:567 __netif_receive_skb_one_core net/core/dev.c:5704 [inline] __netif_receive_skb+0x319/0xa00 net/core/dev.c:5817 process_backlog+0x4ad/0xa50 net/core/dev.c:6149 __napi_poll+0xe7/0x980 net/core/dev.c:6902 napi_poll net/core/dev.c:6971 [inline] net_rx_action+0xa5a/0x19b0 net/core/dev.c:7093 handle_softirqs+0x1a0/0x7c0 kernel/softirq.c:561 __do_softirq+0x14/0x1a kernel/softirq.c:595 do_softirq+0x9a/0x100 kernel/softirq.c:462 __local_bh_enable_ip+0x9f/0xb0 kernel/softirq.c:389 local_bh_enable include/linux/bottom_half.h:33 [inline] rcu_read_unlock_bh include/linux/rcupdate.h:919 [inline] __dev_queue_xmit+0x2758/0x57d0 net/core/dev.c:4493 dev_queue_xmit include/linux/netdevice.h:3168 [inline] neigh_hh_output include/net/neighbour.h:523 [inline] neigh_output include/net/neighbour.h:537 [inline] ip_finish_output2+0x187c/0x1b70 net/ipv4/ip_output.c:236 __ip_finish_output+0x287/0x810 ip_finish_output+0x4b/0x600 net/ipv4/ip_output.c:324 NF_HOOK_COND include/linux/netfilter.h:303 [inline] ip_output+0x15f/0x3f0 net/ipv4/ip_output.c:434 dst_output include/net/dst.h:450 [inline] ip_local_out net/ipv4/ip_output.c:130 [inline] __ip_queue_xmit+0x1f2a/0x20d0 net/ipv4/ip_output.c:536 ip_queue_xmit+0x60/0x80 net/ipv4/ip_output.c:550 __tcp_transmit_skb+0x3cea/0x4900 net/ipv4/tcp_output.c:1468 tcp_transmit_skb net/ipv4/tcp_output.c:1486 [inline] tcp_write_xmit+0x3b90/0x9070 net/ipv4/tcp_output.c:2829 __tcp_push_pending_frames+0xc4/0x380 net/ipv4/tcp_output.c:3012 tcp_send_fin+0x9f6/0xf50 net/ipv4/tcp_output.c:3618 __tcp_close+0x140c/0x1550 net/ipv4/tcp.c:3130 __mptcp_close_ssk+0x74e/0x16f0 net/mptcp/protocol.c:2496 mptcp_close_ssk+0x26b/0x2c0 net/mptcp/protocol.c:2550 mptcp_pm_nl_rm_addr_or_subflow+0x635/0xd10 net/mptcp/pm_netlink.c:889 mptcp_pm_nl_rm_subflow_received net/mptcp/pm_netlink.c:924 [inline] mptcp_pm_flush_addrs_and_subflows net/mptcp/pm_netlink.c:1688 [inline] mptcp_nl_flush_addrs_list net/mptcp/pm_netlink.c:1709 [inline] mptcp_pm_nl_flush_addrs_doit+0xe10/0x1630 net/mptcp/pm_netlink.c:1750 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] ---truncated---
- CVE-2025-21708:
In the Linux kernel, the following vulnerability has been resolved: net: usb: rtl8150: enable basic endpoint checking Syzkaller reports [1] encountering a common issue of utilizing a wrong usb endpoint type during URB submitting stage. This, in turn, triggers a warning shown below. For now, enable simple endpoint checking (specifically, bulk and interrupt eps, testing control one is not essential) to mitigate the issue with a view to do other related cosmetic changes later, if they are necessary. [1] Syzkaller report: usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 1 PID: 2586 at drivers/usb/core/urb.c:503 usb_submit_urb+0xe4b/0x1730 driv> Modules linked in: CPU: 1 UID: 0 PID: 2586 Comm: dhcpcd Not tainted 6.11.0-rc4-syzkaller-00069-gfc88bb11617> Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 08/06/2024 RIP: 0010:usb_submit_urb+0xe4b/0x1730 drivers/usb/core/urb.c:503 Code: 84 3c 02 00 00 e8 05 e4 fc fc 4c 89 ef e8 fd 25 d7 fe 45 89 e0 89 e9 4c 89 f2 48 8> RSP: 0018:ffffc9000441f740 EFLAGS: 00010282 RAX: 0000000000000000 RBX: ffff888112487a00 RCX: ffffffff811a99a9 RDX: ffff88810df6ba80 RSI: ffffffff811a99b6 RDI: 0000000000000001 RBP: 0000000000000003 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000001 R12: 0000000000000001 R13: ffff8881023bf0a8 R14: ffff888112452a20 R15: ffff888112487a7c FS: 00007fc04eea5740(0000) GS:ffff8881f6300000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0a1de9f870 CR3: 000000010dbd0000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> rtl8150_open+0x300/0xe30 drivers/net/usb/rtl8150.c:733 __dev_open+0x2d4/0x4e0 net/core/dev.c:1474 __dev_change_flags+0x561/0x720 net/core/dev.c:8838 dev_change_flags+0x8f/0x160 net/core/dev.c:8910 devinet_ioctl+0x127a/0x1f10 net/ipv4/devinet.c:1177 inet_ioctl+0x3aa/0x3f0 net/ipv4/af_inet.c:1003 sock_do_ioctl+0x116/0x280 net/socket.c:1222 sock_ioctl+0x22e/0x6c0 net/socket.c:1341 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:907 [inline] __se_sys_ioctl fs/ioctl.c:893 [inline] __x64_sys_ioctl+0x193/0x220 fs/ioctl.c:893 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fc04ef73d49 ... This change has not been tested on real hardware.
- CVE-2025-21711:
In the Linux kernel, the following vulnerability has been resolved: net/rose: prevent integer overflows in rose_setsockopt() In case of possible unpredictably large arguments passed to rose_setsockopt() and multiplied by extra values on top of that, integer overflows may occur. Do the safest minimum and fix these issues by checking the contents of 'opt' and returning -EINVAL if they are too large. Also, switch to unsigned int and remove useless check for negative 'opt' in ROSE_IDLE case.
- CVE-2025-21712:
In the Linux kernel, the following vulnerability has been resolved: md/md-bitmap: Synchronize bitmap_get_stats() with bitmap lifetime After commit ec6bb299c7c3 ("md/md-bitmap: add 'sync_size' into struct md_bitmap_stats"), following panic is reported: Oops: general protection fault, probably for non-canonical address RIP: 0010:bitmap_get_stats+0x2b/0xa0 Call Trace: <TASK> md_seq_show+0x2d2/0x5b0 seq_read_iter+0x2b9/0x470 seq_read+0x12f/0x180 proc_reg_read+0x57/0xb0 vfs_read+0xf6/0x380 ksys_read+0x6c/0xf0 do_syscall_64+0x82/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e Root cause is that bitmap_get_stats() can be called at anytime if mddev is still there, even if bitmap is destroyed, or not fully initialized. Deferenceing bitmap in this case can crash the kernel. Meanwhile, the above commit start to deferencing bitmap->storage, make the problem easier to trigger. Fix the problem by protecting bitmap_get_stats() with bitmap_info.mutex.
- CVE-2025-21714:
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix implicit ODP use after free Prevent double queueing of implicit ODP mr destroy work by using __xa_cmpxchg() to make sure this is the only time we are destroying this specific mr. Without this change, we could try to invalidate this mr twice, which in turn could result in queuing a MR work destroy twice, and eventually the second work could execute after the MR was freed due to the first work, causing a user after free and trace below. refcount_t: underflow; use-after-free. WARNING: CPU: 2 PID: 12178 at lib/refcount.c:28 refcount_warn_saturate+0x12b/0x130 Modules linked in: bonding ib_ipoib vfio_pci ip_gre geneve nf_tables ip6_gre gre ip6_tunnel tunnel6 ipip tunnel4 ib_umad rdma_ucm mlx5_vfio_pci vfio_pci_core vfio_iommu_type1 mlx5_ib vfio ib_uverbs mlx5_core iptable_raw openvswitch nsh rpcrdma ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_cm ib_core xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay zram zsmalloc fuse [last unloaded: ib_uverbs] CPU: 2 PID: 12178 Comm: kworker/u20:5 Not tainted 6.5.0-rc1_net_next_mlx5_58c644e #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Workqueue: events_unbound free_implicit_child_mr_work [mlx5_ib] RIP: 0010:refcount_warn_saturate+0x12b/0x130 Code: 48 c7 c7 38 95 2a 82 c6 05 bc c6 fe 00 01 e8 0c 66 aa ff 0f 0b 5b c3 48 c7 c7 e0 94 2a 82 c6 05 a7 c6 fe 00 01 e8 f5 65 aa ff <0f> 0b 5b c3 90 8b 07 3d 00 00 00 c0 74 12 83 f8 01 74 13 8d 50 ff RSP: 0018:ffff8881008e3e40 EFLAGS: 00010286 RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000027 RDX: ffff88852c91b5c8 RSI: 0000000000000001 RDI: ffff88852c91b5c0 RBP: ffff8881dacd4e00 R08: 00000000ffffffff R09: 0000000000000019 R10: 000000000000072e R11: 0000000063666572 R12: ffff88812bfd9e00 R13: ffff8881c792d200 R14: ffff88810011c005 R15: ffff8881002099c0 FS: 0000000000000000(0000) GS:ffff88852c900000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5694b5e000 CR3: 00000001153f6003 CR4: 0000000000370ea0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? refcount_warn_saturate+0x12b/0x130 free_implicit_child_mr_work+0x180/0x1b0 [mlx5_ib] process_one_work+0x1cc/0x3c0 worker_thread+0x218/0x3c0 kthread+0xc6/0xf0 ret_from_fork+0x1f/0x30 </TASK>
- CVE-2025-21715:
In the Linux kernel, the following vulnerability has been resolved: net: davicom: fix UAF in dm9000_drv_remove dm is netdev private data and it cannot be used after free_netdev() call. Using dm after free_netdev() can cause UAF bug. Fix it by moving free_netdev() at the end of the function. This is similar to the issue fixed in commit ad297cd2db89 ("net: qcom/emac: fix UAF in emac_remove"). This bug is detected by our static analysis tool.
- CVE-2025-21716:
In the Linux kernel, the following vulnerability has been resolved: vxlan: Fix uninit-value in vxlan_vnifilter_dump() KMSAN reported an uninit-value access in vxlan_vnifilter_dump() [1]. If the length of the netlink message payload is less than sizeof(struct tunnel_msg), vxlan_vnifilter_dump() accesses bytes beyond the message. This can lead to uninit-value access. Fix this by returning an error in such situations. [1] BUG: KMSAN: uninit-value in vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 vxlan_vnifilter_dump+0x328/0x920 drivers/net/vxlan/vxlan_vnifilter.c:422 rtnl_dumpit+0xd5/0x2f0 net/core/rtnetlink.c:6786 netlink_dump+0x93e/0x15f0 net/netlink/af_netlink.c:2317 __netlink_dump_start+0x716/0xd60 net/netlink/af_netlink.c:2432 netlink_dump_start include/linux/netlink.h:340 [inline] rtnetlink_dump_start net/core/rtnetlink.c:6815 [inline] rtnetlink_rcv_msg+0x1256/0x14a0 net/core/rtnetlink.c:6882 netlink_rcv_skb+0x467/0x660 net/netlink/af_netlink.c:2542 rtnetlink_rcv+0x35/0x40 net/core/rtnetlink.c:6944 netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline] netlink_unicast+0xed6/0x1290 net/netlink/af_netlink.c:1347 netlink_sendmsg+0x1092/0x1230 net/netlink/af_netlink.c:1891 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Uninit was created at: slab_post_alloc_hook mm/slub.c:4110 [inline] slab_alloc_node mm/slub.c:4153 [inline] kmem_cache_alloc_node_noprof+0x800/0xe80 mm/slub.c:4205 kmalloc_reserve+0x13b/0x4b0 net/core/skbuff.c:587 __alloc_skb+0x347/0x7d0 net/core/skbuff.c:678 alloc_skb include/linux/skbuff.h:1323 [inline] netlink_alloc_large_skb+0xa5/0x280 net/netlink/af_netlink.c:1196 netlink_sendmsg+0xac9/0x1230 net/netlink/af_netlink.c:1866 sock_sendmsg_nosec net/socket.c:711 [inline] __sock_sendmsg+0x330/0x3d0 net/socket.c:726 ____sys_sendmsg+0x7f4/0xb50 net/socket.c:2583 ___sys_sendmsg+0x271/0x3b0 net/socket.c:2637 __sys_sendmsg net/socket.c:2669 [inline] __do_sys_sendmsg net/socket.c:2674 [inline] __se_sys_sendmsg net/socket.c:2672 [inline] __x64_sys_sendmsg+0x211/0x3e0 net/socket.c:2672 x64_sys_call+0x3878/0x3d90 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd9/0x1d0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f CPU: 0 UID: 0 PID: 30991 Comm: syz.4.10630 Not tainted 6.12.0-10694-gc44daa7e3c73 #29 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
- CVE-2025-21718:
In the Linux kernel, the following vulnerability has been resolved: net: rose: fix timer races against user threads Rose timers only acquire the socket spinlock, without checking if the socket is owned by one user thread. Add a check and rearm the timers if needed. BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 Read of size 2 at addr ffff88802f09b82a by task swapper/0/0 CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <IRQ> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174 call_timer_fn+0x187/0x650 kernel/time/timer.c:1793 expire_timers kernel/time/timer.c:1844 [inline] __run_timers kernel/time/timer.c:2418 [inline] __run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430 run_timer_base kernel/time/timer.c:2439 [inline] run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449 handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561 __do_softirq kernel/softirq.c:595 [inline] invoke_softirq kernel/softirq.c:435 [inline] __irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662 irq_exit_rcu+0x9/0x30 kernel/softirq.c:678 instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline] sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049 </IRQ>
- CVE-2025-21719:
In the Linux kernel, the following vulnerability has been resolved: ipmr: do not call mr_mfc_uses_dev() for unres entries syzbot found that calling mr_mfc_uses_dev() for unres entries would crash [1], because c->mfc_un.res.minvif / c->mfc_un.res.maxvif alias to "struct sk_buff_head unresolved", which contain two pointers. This code never worked, lets remove it. [1] Unable to handle kernel paging request at virtual address ffff5fff2d536613 KASAN: maybe wild-memory-access in range [0xfffefff96a9b3098-0xfffefff96a9b309f] Modules linked in: CPU: 1 UID: 0 PID: 7321 Comm: syz.0.16 Not tainted 6.13.0-rc7-syzkaller-g1950a0af2d55 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline] pc : mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334 lr : mr_mfc_uses_dev net/ipv4/ipmr_base.c:289 [inline] lr : mr_table_dump+0x694/0x8b0 net/ipv4/ipmr_base.c:334 Call trace: mr_mfc_uses_dev net/ipv4/ipmr_base.c:290 [inline] (P) mr_table_dump+0x5a4/0x8b0 net/ipv4/ipmr_base.c:334 (P) mr_rtm_dumproute+0x254/0x454 net/ipv4/ipmr_base.c:382 ipmr_rtm_dumproute+0x248/0x4b4 net/ipv4/ipmr.c:2648 rtnl_dump_all+0x2e4/0x4e8 net/core/rtnetlink.c:4327 rtnl_dumpit+0x98/0x1d0 net/core/rtnetlink.c:6791 netlink_dump+0x4f0/0xbc0 net/netlink/af_netlink.c:2317 netlink_recvmsg+0x56c/0xe64 net/netlink/af_netlink.c:1973 sock_recvmsg_nosec net/socket.c:1033 [inline] sock_recvmsg net/socket.c:1055 [inline] sock_read_iter+0x2d8/0x40c net/socket.c:1125 new_sync_read fs/read_write.c:484 [inline] vfs_read+0x740/0x970 fs/read_write.c:565 ksys_read+0x15c/0x26c fs/read_write.c:708
- CVE-2025-21721:
In the Linux kernel, the following vulnerability has been resolved: nilfs2: handle errors that nilfs_prepare_chunk() may return Patch series "nilfs2: fix issues with rename operations". This series fixes BUG_ON check failures reported by syzbot around rename operations, and a minor behavioral issue where the mtime of a child directory changes when it is renamed instead of moved. This patch (of 2): The directory manipulation routines nilfs_set_link() and nilfs_delete_entry() rewrite the directory entry in the folio/page previously read by nilfs_find_entry(), so error handling is omitted on the assumption that nilfs_prepare_chunk(), which prepares the buffer for rewriting, will always succeed for these. And if an error is returned, it triggers the legacy BUG_ON() checks in each routine. This assumption is wrong, as proven by syzbot: the buffer layer called by nilfs_prepare_chunk() may call nilfs_get_block() if necessary, which may fail due to metadata corruption or other reasons. This has been there all along, but improved sanity checks and error handling may have made it more reproducible in fuzzing tests. Fix this issue by adding missing error paths in nilfs_set_link(), nilfs_delete_entry(), and their caller nilfs_rename().
- CVE-2025-21722:
In the Linux kernel, the following vulnerability has been resolved: nilfs2: do not force clear folio if buffer is referenced Patch series "nilfs2: protect busy buffer heads from being force-cleared". This series fixes the buffer head state inconsistency issues reported by syzbot that occurs when the filesystem is corrupted and falls back to read-only, and the associated buffer head use-after-free issue. This patch (of 2): Syzbot has reported that after nilfs2 detects filesystem corruption and falls back to read-only, inconsistencies in the buffer state may occur. One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty() to set a data or metadata buffer as dirty, but it detects that the buffer is not in the uptodate state: WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520 fs/buffer.c:1177 ... Call Trace: <TASK> nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598 nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73 nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344 nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218 vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257 do_mkdirat+0x264/0x3a0 fs/namei.c:4280 __do_sys_mkdirat fs/namei.c:4295 [inline] __se_sys_mkdirat fs/namei.c:4293 [inline] __x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f The other is when nilfs_btree_propagate(), which propagates the dirty state to the ancestor nodes of a b-tree that point to a dirty buffer, detects that the origin buffer is not dirty, even though it should be: WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089 nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089 ... Call Trace: <TASK> nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345 nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587 nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006 nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045 nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline] nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline] nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115 nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479 nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline] nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Both of these issues are caused by the callbacks that handle the page/folio write requests, forcibly clear various states, including the working state of the buffers they hold, at unexpected times when they detect read-only fallback. Fix these issues by checking if the buffer is referenced before clearing the page/folio state, and skipping the clear if it is.
- CVE-2025-21723:
In the Linux kernel, the following vulnerability has been resolved: scsi: mpi3mr: Fix possible crash when setting up bsg fails If bsg_setup_queue() fails, the bsg_queue is assigned a non-NULL value. Consequently, in mpi3mr_bsg_exit(), the condition "if(!mrioc->bsg_queue)" will not be satisfied, preventing execution from entering bsg_remove_queue(), which could lead to the following crash: BUG: kernel NULL pointer dereference, address: 000000000000041c Call Trace: <TASK> mpi3mr_bsg_exit+0x1f/0x50 [mpi3mr] mpi3mr_remove+0x6f/0x340 [mpi3mr] pci_device_remove+0x3f/0xb0 device_release_driver_internal+0x19d/0x220 unbind_store+0xa4/0xb0 kernfs_fop_write_iter+0x11f/0x200 vfs_write+0x1fc/0x3e0 ksys_write+0x67/0xe0 do_syscall_64+0x38/0x80 entry_SYSCALL_64_after_hwframe+0x78/0xe2
- CVE-2025-21724:
In the Linux kernel, the following vulnerability has been resolved: iommufd/iova_bitmap: Fix shift-out-of-bounds in iova_bitmap_offset_to_index() Resolve a UBSAN shift-out-of-bounds issue in iova_bitmap_offset_to_index() where shifting the constant "1" (of type int) by bitmap->mapped.pgshift (an unsigned long value) could result in undefined behavior. The constant "1" defaults to a 32-bit "int", and when "pgshift" exceeds 31 (e.g., pgshift = 63) the shift operation overflows, as the result cannot be represented in a 32-bit type. To resolve this, the constant is updated to "1UL", promoting it to an unsigned long type to match the operand's type.
- CVE-2025-21725:
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix oops due to unset link speed It isn't guaranteed that NETWORK_INTERFACE_INFO::LinkSpeed will always be set by the server, so the client must handle any values and then prevent oopses like below from happening: Oops: divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI CPU: 0 UID: 0 PID: 1323 Comm: cat Not tainted 6.13.0-rc7 #2 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-3.fc41 04/01/2014 RIP: 0010:cifs_debug_data_proc_show+0xa45/0x1460 [cifs] Code: 00 00 48 89 df e8 3b cd 1b c1 41 f6 44 24 2c 04 0f 84 50 01 00 00 48 89 ef e8 e7 d0 1b c1 49 8b 44 24 18 31 d2 49 8d 7c 24 28 <48> f7 74 24 18 48 89 c3 e8 6e cf 1b c1 41 8b 6c 24 28 49 8d 7c 24 RSP: 0018:ffffc90001817be0 EFLAGS: 00010246 RAX: 0000000000000000 RBX: ffff88811230022c RCX: ffffffffc041bd99 RDX: 0000000000000000 RSI: 0000000000000567 RDI: ffff888112300228 RBP: ffff888112300218 R08: fffff52000302f5f R09: ffffed1022fa58ac R10: ffff888117d2c566 R11: 00000000fffffffe R12: ffff888112300200 R13: 000000012a15343f R14: 0000000000000001 R15: ffff888113f2db58 FS: 00007fe27119e740(0000) GS:ffff888148600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fe2633c5000 CR3: 0000000124da0000 CR4: 0000000000750ef0 PKRU: 55555554 Call Trace: <TASK> ? __die_body.cold+0x19/0x27 ? die+0x2e/0x50 ? do_trap+0x159/0x1b0 ? cifs_debug_data_proc_show+0xa45/0x1460 [cifs] ? do_error_trap+0x90/0x130 ? cifs_debug_data_proc_show+0xa45/0x1460 [cifs] ? exc_divide_error+0x39/0x50 ? cifs_debug_data_proc_show+0xa45/0x1460 [cifs] ? asm_exc_divide_error+0x1a/0x20 ? cifs_debug_data_proc_show+0xa39/0x1460 [cifs] ? cifs_debug_data_proc_show+0xa45/0x1460 [cifs] ? seq_read_iter+0x42e/0x790 seq_read_iter+0x19a/0x790 proc_reg_read_iter+0xbe/0x110 ? __pfx_proc_reg_read_iter+0x10/0x10 vfs_read+0x469/0x570 ? do_user_addr_fault+0x398/0x760 ? __pfx_vfs_read+0x10/0x10 ? find_held_lock+0x8a/0xa0 ? __pfx_lock_release+0x10/0x10 ksys_read+0xd3/0x170 ? __pfx_ksys_read+0x10/0x10 ? __rcu_read_unlock+0x50/0x270 ? mark_held_locks+0x1a/0x90 do_syscall_64+0xbb/0x1d0 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7fe271288911 Code: 00 48 8b 15 01 25 10 00 f7 d8 64 89 02 b8 ff ff ff ff eb bd e8 20 ad 01 00 f3 0f 1e fa 80 3d b5 a7 10 00 00 74 13 31 c0 0f 05 <48> 3d 00 f0 ff ff 77 4f c3 66 0f 1f 44 00 00 55 48 89 e5 48 83 ec RSP: 002b:00007ffe87c079d8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000 RAX: ffffffffffffffda RBX: 0000000000040000 RCX: 00007fe271288911 RDX: 0000000000040000 RSI: 00007fe2633c6000 RDI: 0000000000000003 RBP: 00007ffe87c07a00 R08: 0000000000000000 R09: 00007fe2713e6380 R10: 0000000000000022 R11: 0000000000000246 R12: 0000000000040000 R13: 00007fe2633c6000 R14: 0000000000000003 R15: 0000000000000000 </TASK> Fix this by setting cifs_server_iface::speed to a sane value (1Gbps) by default when link speed is unset.
- CVE-2025-21726:
In the Linux kernel, the following vulnerability has been resolved: padata: avoid UAF for reorder_work Although the previous patch can avoid ps and ps UAF for _do_serial, it can not avoid potential UAF issue for reorder_work. This issue can happen just as below: crypto_request crypto_request crypto_del_alg padata_do_serial ... padata_reorder // processes all remaining // requests then breaks while (1) { if (!padata) break; ... } padata_do_serial // new request added list_add // sees the new request queue_work(reorder_work) padata_reorder queue_work_on(squeue->work) ... <kworker context> padata_serial_worker // completes new request, // no more outstanding // requests crypto_del_alg // free pd <kworker context> invoke_padata_reorder // UAF of pd To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work' into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish.
- CVE-2025-21727:
In the Linux kernel, the following vulnerability has been resolved: padata: fix UAF in padata_reorder A bug was found when run ltp test: BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0 Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206 CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+ Workqueue: pdecrypt_parallel padata_parallel_worker Call Trace: <TASK> dump_stack_lvl+0x32/0x50 print_address_description.constprop.0+0x6b/0x3d0 print_report+0xdd/0x2c0 kasan_report+0xa5/0xd0 padata_find_next+0x29/0x1a0 padata_reorder+0x131/0x220 padata_parallel_worker+0x3d/0xc0 process_one_work+0x2ec/0x5a0 If 'mdelay(10)' is added before calling 'padata_find_next' in the 'padata_reorder' function, this issue could be reproduced easily with ltp test (pcrypt_aead01). This can be explained as bellow: pcrypt_aead_encrypt ... padata_do_parallel refcount_inc(&pd->refcnt); // add refcnt ... padata_do_serial padata_reorder // pd while (1) { padata_find_next(pd, true); // using pd queue_work_on ... padata_serial_worker crypto_del_alg padata_put_pd_cnt // sub refcnt padata_free_shell padata_put_pd(ps->pd); // pd is freed // loop again, but pd is freed // call padata_find_next, UAF } In the padata_reorder function, when it loops in 'while', if the alg is deleted, the refcnt may be decreased to 0 before entering 'padata_find_next', which leads to UAF. As mentioned in [1], do_serial is supposed to be called with BHs disabled and always happen under RCU protection, to address this issue, add synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls to finish. [1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.localdomain/ [2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/
- CVE-2025-21728:
In the Linux kernel, the following vulnerability has been resolved: bpf: Send signals asynchronously if !preemptible BPF programs can execute in all kinds of contexts and when a program running in a non-preemptible context uses the bpf_send_signal() kfunc, it will cause issues because this kfunc can sleep. Change `irqs_disabled()` to `!preemptible()`.
- CVE-2025-21729:
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw89: fix race between cancel_hw_scan and hw_scan completion The rtwdev->scanning flag isn't protected by mutex originally, so cancel_hw_scan can pass the condition, but suddenly hw_scan completion unset the flag and calls ieee80211_scan_completed() that will free local->hw_scan_req. Then, cancel_hw_scan raises null-ptr-deref and use-after-free. Fix it by moving the check condition to where protected by mutex. KASAN: null-ptr-deref in range [0x0000000000000088-0x000000000000008f] CPU: 2 PID: 6922 Comm: kworker/2:2 Tainted: G OE Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB6WW (2.76 ) 09/10/2019 Workqueue: events cfg80211_conn_work [cfg80211] RIP: 0010:rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] Code: 00 45 89 6c 24 1c 0f 85 23 01 00 00 48 8b 85 20 ff ff ff 48 8d RSP: 0018:ffff88811fd9f068 EFLAGS: 00010206 RAX: dffffc0000000000 RBX: ffff88811fd9f258 RCX: 0000000000000001 RDX: 0000000000000011 RSI: 0000000000000001 RDI: 0000000000000089 RBP: ffff88811fd9f170 R08: 0000000000000000 R09: 0000000000000000 R10: ffff88811fd9f108 R11: 0000000000000000 R12: ffff88810e47f960 R13: 0000000000000000 R14: 000000000000ffff R15: 0000000000000000 FS: 0000000000000000(0000) GS:ffff8881d6f00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007531dfca55b0 CR3: 00000001be296004 CR4: 00000000001706e0 Call Trace: <TASK> ? show_regs+0x61/0x73 ? __die_body+0x20/0x73 ? die_addr+0x4f/0x7b ? exc_general_protection+0x191/0x1db ? asm_exc_general_protection+0x27/0x30 ? rtw89_fw_h2c_scan_offload_be+0xc33/0x13c3 [rtw89_core] ? rtw89_fw_h2c_scan_offload_be+0x458/0x13c3 [rtw89_core] ? __pfx_rtw89_fw_h2c_scan_offload_be+0x10/0x10 [rtw89_core] ? do_raw_spin_lock+0x75/0xdb ? __pfx_do_raw_spin_lock+0x10/0x10 rtw89_hw_scan_offload+0xb5e/0xbf7 [rtw89_core] ? _raw_spin_unlock+0xe/0x24 ? __mutex_lock.constprop.0+0x40c/0x471 ? __pfx_rtw89_hw_scan_offload+0x10/0x10 [rtw89_core] ? __mutex_lock_slowpath+0x13/0x1f ? mutex_lock+0xa2/0xdc ? __pfx_mutex_lock+0x10/0x10 rtw89_hw_scan_abort+0x58/0xb7 [rtw89_core] rtw89_ops_cancel_hw_scan+0x120/0x13b [rtw89_core] ieee80211_scan_cancel+0x468/0x4d0 [mac80211] ieee80211_prep_connection+0x858/0x899 [mac80211] ieee80211_mgd_auth+0xbea/0xdde [mac80211] ? __pfx_ieee80211_mgd_auth+0x10/0x10 [mac80211] ? cfg80211_find_elem+0x15/0x29 [cfg80211] ? is_bss+0x1b7/0x1d7 [cfg80211] ieee80211_auth+0x18/0x27 [mac80211] cfg80211_mlme_auth+0x3bb/0x3e7 [cfg80211] cfg80211_conn_do_work+0x410/0xb81 [cfg80211] ? __pfx_cfg80211_conn_do_work+0x10/0x10 [cfg80211] ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? __kasan_check_write+0x14/0x22 ? mutex_lock+0x8e/0xdc ? __pfx_mutex_lock+0x10/0x10 ? __pfx___radix_tree_lookup+0x10/0x10 cfg80211_conn_work+0x245/0x34d [cfg80211] ? __pfx_cfg80211_conn_work+0x10/0x10 [cfg80211] ? update_cfs_rq_load_avg+0x3bc/0x3d7 ? sched_clock_noinstr+0x9/0x1a ? sched_clock+0x10/0x24 ? sched_clock_cpu+0x7e/0x42e ? newidle_balance+0x796/0x937 ? __pfx_sched_clock_cpu+0x10/0x10 ? __pfx_newidle_balance+0x10/0x10 ? __kasan_check_read+0x11/0x1f ? psi_group_change+0x8bc/0x944 ? _raw_spin_unlock+0xe/0x24 ? raw_spin_rq_unlock+0x47/0x54 ? raw_spin_rq_unlock_irq+0x9/0x1f ? finish_task_switch.isra.0+0x347/0x586 ? __schedule+0x27bf/0x2892 ? mutex_unlock+0x80/0xd0 ? do_raw_spin_lock+0x75/0xdb ? __pfx___schedule+0x10/0x10 process_scheduled_works+0x58c/0x821 worker_thread+0x4c7/0x586 ? __kasan_check_read+0x11/0x1f kthread+0x285/0x294 ? __pfx_worker_thread+0x10/0x10 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x29/0x6f ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
- CVE-2025-21731:
In the Linux kernel, the following vulnerability has been resolved: nbd: don't allow reconnect after disconnect Following process can cause nbd_config UAF: 1) grab nbd_config temporarily; 2) nbd_genl_disconnect() flush all recv_work() and release the initial reference: nbd_genl_disconnect nbd_disconnect_and_put nbd_disconnect flush_workqueue(nbd->recv_workq) if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...)) nbd_config_put -> due to step 1), reference is still not zero 3) nbd_genl_reconfigure() queue recv_work() again; nbd_genl_reconfigure config = nbd_get_config_unlocked(nbd) if (!config) -> succeed if (!test_bit(NBD_RT_BOUND, ...)) -> succeed nbd_reconnect_socket queue_work(nbd->recv_workq, &args->work) 4) step 1) release the reference; 5) Finially, recv_work() will trigger UAF: recv_work nbd_config_put(nbd) -> nbd_config is freed atomic_dec(&config->recv_threads) -> UAF Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so that nbd_genl_reconfigure() will fail.
- CVE-2025-21732:
In the Linux kernel, the following vulnerability has been resolved: RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error This patch addresses a race condition for an ODP MR that can result in a CQE with an error on the UMR QP. During the __mlx5_ib_dereg_mr() flow, the following sequence of calls occurs: mlx5_revoke_mr() mlx5r_umr_revoke_mr() mlx5r_umr_post_send_wait() At this point, the lkey is freed from the hardware's perspective. However, concurrently, mlx5_ib_invalidate_range() might be triggered by another task attempting to invalidate a range for the same freed lkey. This task will: - Acquire the umem_odp->umem_mutex lock. - Call mlx5r_umr_update_xlt() on the UMR QP. - Since the lkey has already been freed, this can lead to a CQE error, causing the UMR QP to enter an error state [1]. To resolve this race condition, the umem_odp->umem_mutex lock is now also acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke, we set umem_odp->private which points to that MR to NULL, preventing any further invalidation attempts on its lkey. [1] From dmesg: infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2 WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib] Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib] [..] Call Trace: <TASK> mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib] mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib] __mmu_notifier_invalidate_range_start+0x1e1/0x240 zap_page_range_single+0xf1/0x1a0 madvise_vma_behavior+0x677/0x6e0 do_madvise+0x1a2/0x4b0 __x64_sys_madvise+0x25/0x30 do_syscall_64+0x6b/0x140 entry_SYSCALL_64_after_hwframe+0x76/0x7e
- CVE-2025-21734:
In the Linux kernel, the following vulnerability has been resolved: misc: fastrpc: Fix copy buffer page size For non-registered buffer, fastrpc driver copies the buffer and pass it to the remote subsystem. There is a problem with current implementation of page size calculation which is not considering the offset in the calculation. This might lead to passing of improper and out-of-bounds page size which could result in memory issue. Calculate page start and page end using the offset adjusted address instead of absolute address.
- CVE-2025-21735:
In the Linux kernel, the following vulnerability has been resolved: NFC: nci: Add bounds checking in nci_hci_create_pipe() The "pipe" variable is a u8 which comes from the network. If it's more than 127, then it results in memory corruption in the caller, nci_hci_connect_gate().
- CVE-2025-21736:
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix possible int overflows in nilfs_fiemap() Since nilfs_bmap_lookup_contig() in nilfs_fiemap() calculates its result by being prepared to go through potentially maxblocks == INT_MAX blocks, the value in n may experience an overflow caused by left shift of blkbits. While it is extremely unlikely to occur, play it safe and cast right hand expression to wider type to mitigate the issue. Found by Linux Verification Center (linuxtesting.org) with static analysis tool SVACE.
- CVE-2025-21738:
In the Linux kernel, the following vulnerability has been resolved: ata: libata-sff: Ensure that we cannot write outside the allocated buffer reveliofuzzing reported that a SCSI_IOCTL_SEND_COMMAND ioctl with out_len set to 0xd42, SCSI command set to ATA_16 PASS-THROUGH, ATA command set to ATA_NOP, and protocol set to ATA_PROT_PIO, can cause ata_pio_sector() to write outside the allocated buffer, overwriting random memory. While a ATA device is supposed to abort a ATA_NOP command, there does seem to be a bug either in libata-sff or QEMU, where either this status is not set, or the status is cleared before read by ata_sff_hsm_move(). Anyway, that is most likely a separate bug. Looking at __atapi_pio_bytes(), it already has a safety check to ensure that __atapi_pio_bytes() cannot write outside the allocated buffer. Add a similar check to ata_pio_sector(), such that also ata_pio_sector() cannot write outside the allocated buffer.
- CVE-2025-21739:
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Fix use-after free in init error and remove paths devm_blk_crypto_profile_init() registers a cleanup handler to run when the associated (platform-) device is being released. For UFS, the crypto private data and pointers are stored as part of the ufs_hba's data structure 'struct ufs_hba::crypto_profile'. This structure is allocated as part of the underlying ufshcd and therefore Scsi_host allocation. During driver release or during error handling in ufshcd_pltfrm_init(), this structure is released as part of ufshcd_dealloc_host() before the (platform-) device associated with the crypto call above is released. Once this device is released, the crypto cleanup code will run, using the just-released 'struct ufs_hba::crypto_profile'. This causes a use-after-free situation: Call trace: kfree+0x60/0x2d8 (P) kvfree+0x44/0x60 blk_crypto_profile_destroy_callback+0x28/0x70 devm_action_release+0x1c/0x30 release_nodes+0x6c/0x108 devres_release_all+0x98/0x100 device_unbind_cleanup+0x20/0x70 really_probe+0x218/0x2d0 In other words, the initialisation code flow is: platform-device probe ufshcd_pltfrm_init() ufshcd_alloc_host() scsi_host_alloc() allocation of struct ufs_hba creation of scsi-host devices devm_blk_crypto_profile_init() devm registration of cleanup handler using platform-device and during error handling of ufshcd_pltfrm_init() or during driver removal: ufshcd_dealloc_host() scsi_host_put() put_device(scsi-host) release of struct ufs_hba put_device(platform-device) crypto cleanup handler To fix this use-after free, change ufshcd_alloc_host() to register a devres action to automatically cleanup the underlying SCSI device on ufshcd destruction, without requiring explicit calls to ufshcd_dealloc_host(). This way: * the crypto profile and all other ufs_hba-owned resources are destroyed before SCSI (as they've been registered after) * a memleak is plugged in tc-dwc-g210-pci.c remove() as a side-effect * EXPORT_SYMBOL_GPL(ufshcd_dealloc_host) can be removed fully as it's not needed anymore * no future drivers using ufshcd_alloc_host() could ever forget adding the cleanup
- CVE-2025-21744:
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: fix NULL pointer dereference in brcmf_txfinalize() On removal of the device or unloading of the kernel module a potential NULL pointer dereference occurs. The following sequence deletes the interface: brcmf_detach() brcmf_remove_interface() brcmf_del_if() Inside the brcmf_del_if() function the drvr->if2bss[ifidx] is updated to BRCMF_BSSIDX_INVALID (-1) if the bsscfgidx matches. After brcmf_remove_interface() call the brcmf_proto_detach() function is called providing the following sequence: brcmf_detach() brcmf_proto_detach() brcmf_proto_msgbuf_detach() brcmf_flowring_detach() brcmf_msgbuf_delete_flowring() brcmf_msgbuf_remove_flowring() brcmf_flowring_delete() brcmf_get_ifp() brcmf_txfinalize() Since brcmf_get_ip() can and actually will return NULL in this case the call to brcmf_txfinalize() will result in a NULL pointer dereference inside brcmf_txfinalize() when trying to update ifp->ndev->stats.tx_errors. This will only happen if a flowring still has an skb. Although the NULL pointer dereference has only been seen when trying to update the tx statistic, all other uses of the ifp pointer have been guarded as well with an early return if ifp is NULL.
- CVE-2025-21745:
In the Linux kernel, the following vulnerability has been resolved: blk-cgroup: Fix class @block_class's subsystem refcount leakage blkcg_fill_root_iostats() iterates over @block_class's devices by class_dev_iter_(init|next)(), but does not end iterating with class_dev_iter_exit(), so causes the class's subsystem refcount leakage. Fix by ending the iterating with class_dev_iter_exit().
- CVE-2025-21748:
In the Linux kernel, the following vulnerability has been resolved: ksmbd: fix integer overflows on 32 bit systems On 32bit systems the addition operations in ipc_msg_alloc() can potentially overflow leading to memory corruption. Add bounds checking using KSMBD_IPC_MAX_PAYLOAD to avoid overflow.
- CVE-2025-21749:
In the Linux kernel, the following vulnerability has been resolved: net: rose: lock the socket in rose_bind() syzbot reported a soft lockup in rose_loopback_timer(), with a repro calling bind() from multiple threads. rose_bind() must lock the socket to avoid this issue.
- CVE-2025-21750:
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Check the return value of of_property_read_string_index() Somewhen between 6.10 and 6.11 the driver started to crash on my MacBookPro14,3. The property doesn't exist and 'tmp' remains uninitialized, so we pass a random pointer to devm_kstrdup(). The crash I am getting looks like this: BUG: unable to handle page fault for address: 00007f033c669379 PF: supervisor read access in kernel mode PF: error_code(0x0001) - permissions violation PGD 8000000101341067 P4D 8000000101341067 PUD 101340067 PMD 1013bb067 PTE 800000010aee9025 Oops: Oops: 0001 [#1] SMP PTI CPU: 4 UID: 0 PID: 827 Comm: (udev-worker) Not tainted 6.11.8-gentoo #1 Hardware name: Apple Inc. MacBookPro14,3/Mac-551B86E5744E2388, BIOS 529.140.2.0.0 06/23/2024 RIP: 0010:strlen+0x4/0x30 Code: f7 75 ec 31 c0 c3 cc cc cc cc 48 89 f8 c3 cc cc cc cc 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa <80> 3f 00 74 14 48 89 f8 48 83 c0 01 80 38 00 75 f7 48 29 f8 c3 cc RSP: 0018:ffffb4aac0683ad8 EFLAGS: 00010202 RAX: 00000000ffffffea RBX: 00007f033c669379 RCX: 0000000000000001 RDX: 0000000000000cc0 RSI: 00007f033c669379 RDI: 00007f033c669379 RBP: 00000000ffffffea R08: 0000000000000000 R09: 00000000c0ba916a R10: ffffffffffffffff R11: ffffffffb61ea260 R12: ffff91f7815b50c8 R13: 0000000000000cc0 R14: ffff91fafefffe30 R15: ffffb4aac0683b30 FS: 00007f033ccbe8c0(0000) GS:ffff91faeed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f033c669379 CR3: 0000000107b1e004 CR4: 00000000003706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? __die+0x23/0x70 ? page_fault_oops+0x149/0x4c0 ? raw_spin_rq_lock_nested+0xe/0x20 ? sched_balance_newidle+0x22b/0x3c0 ? update_load_avg+0x78/0x770 ? exc_page_fault+0x6f/0x150 ? asm_exc_page_fault+0x26/0x30 ? __pfx_pci_conf1_write+0x10/0x10 ? strlen+0x4/0x30 devm_kstrdup+0x25/0x70 brcmf_of_probe+0x273/0x350 [brcmfmac]
- CVE-2025-21751:
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: HWS, change error flow on matcher disconnect Currently, when firmware failure occurs during matcher disconnect flow, the error flow of the function reconnects the matcher back and returns an error, which continues running the calling function and eventually frees the matcher that is being disconnected. This leads to a case where we have a freed matcher on the matchers list, which in turn leads to use-after-free and eventual crash. This patch fixes that by not trying to reconnect the matcher back when some FW command fails during disconnect. Note that we're dealing here with FW error. We can't overcome this problem. This might lead to bad steering state (e.g. wrong connection between matchers), and will also lead to resource leakage, as it is the case with any other error handling during resource destruction. However, the goal here is to allow the driver to continue and not crash the machine with use-after-free error.
- CVE-2025-21752:
In the Linux kernel, the following vulnerability has been resolved: btrfs: don't use btrfs_set_item_key_safe on RAID stripe-extents Don't use btrfs_set_item_key_safe() to modify the keys in the RAID stripe-tree, as this can lead to corruption of the tree, which is caught by the checks in btrfs_set_item_key_safe(): BTRFS info (device nvme1n1): leaf 49168384 gen 15 total ptrs 194 free space 8329 owner 12 BTRFS info (device nvme1n1): refs 2 lock_owner 1030 current 1030 [ snip ] item 105 key (354549760 230 20480) itemoff 14587 itemsize 16 stride 0 devid 5 physical 67502080 item 106 key (354631680 230 4096) itemoff 14571 itemsize 16 stride 0 devid 1 physical 88559616 item 107 key (354631680 230 32768) itemoff 14555 itemsize 16 stride 0 devid 1 physical 88555520 item 108 key (354717696 230 28672) itemoff 14539 itemsize 16 stride 0 devid 2 physical 67604480 [ snip ] BTRFS critical (device nvme1n1): slot 106 key (354631680 230 32768) new key (354635776 230 4096) ------------[ cut here ]------------ kernel BUG at fs/btrfs/ctree.c:2602! Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI CPU: 1 UID: 0 PID: 1055 Comm: fsstress Not tainted 6.13.0-rc1+ #1464 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 RIP: 0010:btrfs_set_item_key_safe+0xf7/0x270 Code: <snip> RSP: 0018:ffffc90001337ab0 EFLAGS: 00010287 RAX: 0000000000000000 RBX: ffff8881115fd000 RCX: 0000000000000000 RDX: 0000000000000001 RSI: 0000000000000001 RDI: 00000000ffffffff RBP: ffff888110ed6f50 R08: 00000000ffffefff R09: ffffffff8244c500 R10: 00000000ffffefff R11: 00000000ffffffff R12: ffff888100586000 R13: 00000000000000c9 R14: ffffc90001337b1f R15: ffff888110f23b58 FS: 00007f7d75c72740(0000) GS:ffff88813bd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa811652c60 CR3: 0000000111398001 CR4: 0000000000370eb0 Call Trace: <TASK> ? __die_body.cold+0x14/0x1a ? die+0x2e/0x50 ? do_trap+0xca/0x110 ? do_error_trap+0x65/0x80 ? btrfs_set_item_key_safe+0xf7/0x270 ? exc_invalid_op+0x50/0x70 ? btrfs_set_item_key_safe+0xf7/0x270 ? asm_exc_invalid_op+0x1a/0x20 ? btrfs_set_item_key_safe+0xf7/0x270 btrfs_partially_delete_raid_extent+0xc4/0xe0 btrfs_delete_raid_extent+0x227/0x240 __btrfs_free_extent.isra.0+0x57f/0x9c0 ? exc_coproc_segment_overrun+0x40/0x40 __btrfs_run_delayed_refs+0x2fa/0xe80 btrfs_run_delayed_refs+0x81/0xe0 btrfs_commit_transaction+0x2dd/0xbe0 ? preempt_count_add+0x52/0xb0 btrfs_sync_file+0x375/0x4c0 do_fsync+0x39/0x70 __x64_sys_fsync+0x13/0x20 do_syscall_64+0x54/0x110 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f7d7550ef90 Code: <snip> RSP: 002b:00007ffd70237248 EFLAGS: 00000202 ORIG_RAX: 000000000000004a RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007f7d7550ef90 RDX: 000000000000013a RSI: 000000000040eb28 RDI: 0000000000000004 RBP: 000000000000001b R08: 0000000000000078 R09: 00007ffd7023725c R10: 00007f7d75400390 R11: 0000000000000202 R12: 028f5c28f5c28f5c R13: 8f5c28f5c28f5c29 R14: 000000000040b520 R15: 00007f7d75c726c8 </TASK> While the root cause of the tree order corruption isn't clear, using btrfs_duplicate_item() to copy the item and then adjusting both the key and the per-device physical addresses is a safe way to counter this problem.
- CVE-2025-21753:
In the Linux kernel, the following vulnerability has been resolved: btrfs: fix use-after-free when attempting to join an aborted transaction When we are trying to join the current transaction and if it's aborted, we read its 'aborted' field after unlocking fs_info->trans_lock and without holding any extra reference count on it. This means that a concurrent task that is aborting the transaction may free the transaction before we read its 'aborted' field, leading to a use-after-free. Fix this by reading the 'aborted' field while holding fs_info->trans_lock since any freeing task must first acquire that lock and set fs_info->running_transaction to NULL before freeing the transaction. This was reported by syzbot and Dmitry with the following stack traces from KASAN: ================================================================== BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128 CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 Workqueue: events_unbound btrfs_async_reclaim_data_space Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x169/0x550 mm/kasan/report.c:489 kasan_report+0x143/0x180 mm/kasan/report.c:602 join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803 btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321 process_one_work kernel/workqueue.c:3236 [inline] process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317 worker_thread+0x870/0xd30 kernel/workqueue.c:3398 kthread+0x2f0/0x390 kernel/kthread.c:389 ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244 </TASK> Allocated by task 5315: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 poison_kmalloc_redzone mm/kasan/common.c:377 [inline] __kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394 kasan_kmalloc include/linux/kasan.h:260 [inline] __kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329 kmalloc_noprof include/linux/slab.h:901 [inline] join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308 start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697 btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572 lookup_open fs/namei.c:3649 [inline] open_last_lookups fs/namei.c:3748 [inline] path_openat+0x1c03/0x3590 fs/namei.c:3984 do_filp_open+0x27f/0x4e0 fs/namei.c:4014 do_sys_openat2+0x13e/0x1d0 fs/open.c:1402 do_sys_open fs/open.c:1417 [inline] __do_sys_creat fs/open.c:1495 [inline] __se_sys_creat fs/open.c:1489 [inline] __x64_sys_creat+0x123/0x170 fs/open.c:1489 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f Freed by task 5336: kasan_save_stack mm/kasan/common.c:47 [inline] kasan_save_track+0x3f/0x80 mm/kasan/common.c:68 kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582 poison_slab_object mm/kasan/common.c:247 [inline] __kasan_slab_free+0x59/0x70 mm/kasan/common.c:264 kasan_slab_free include/linux/kasan.h:233 [inline] slab_free_hook mm/slub.c:2353 [inline] slab_free mm/slub.c:4613 [inline] kfree+0x196/0x430 mm/slub.c:4761 cleanup_transaction fs/btrfs/transaction.c:2063 [inline] btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598 insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757 btrfs_balance+0x992/ ---truncated---
- CVE-2025-21756:
In the Linux kernel, the following vulnerability has been resolved: vsock: Keep the binding until socket destruction Preserve sockets bindings; this includes both resulting from an explicit bind() and those implicitly bound through autobind during connect(). Prevents socket unbinding during a transport reassignment, which fixes a use-after-free: 1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2) 2. transport->release() calls vsock_remove_bound() without checking if sk was bound and moved to bound list (refcnt=1) 3. vsock_bind() assumes sk is in unbound list and before __vsock_insert_bound(vsock_bound_sockets()) calls __vsock_remove_bound() which does: list_del_init(&vsk->bound_table); // nop sock_put(&vsk->sk); // refcnt=0 BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730 Read of size 4 at addr ffff88816b46a74c by task a.out/2057 dump_stack_lvl+0x68/0x90 print_report+0x174/0x4f6 kasan_report+0xb9/0x190 __vsock_bind+0x62e/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Allocated by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 __kasan_slab_alloc+0x85/0x90 kmem_cache_alloc_noprof+0x131/0x450 sk_prot_alloc+0x5b/0x220 sk_alloc+0x2c/0x870 __vsock_create.constprop.0+0x2e/0xb60 vsock_create+0xe4/0x420 __sock_create+0x241/0x650 __sys_socket+0xf2/0x1a0 __x64_sys_socket+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e Freed by task 2057: kasan_save_stack+0x1e/0x40 kasan_save_track+0x10/0x30 kasan_save_free_info+0x37/0x60 __kasan_slab_free+0x4b/0x70 kmem_cache_free+0x1a1/0x590 __sk_destruct+0x388/0x5a0 __vsock_bind+0x5e1/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: addition on 0; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150 RIP: 0010:refcount_warn_saturate+0xce/0x150 __vsock_bind+0x66d/0x730 vsock_bind+0x97/0xe0 __sys_bind+0x154/0x1f0 __x64_sys_bind+0x6e/0xb0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e refcount_t: underflow; use-after-free. WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150 RIP: 0010:refcount_warn_saturate+0xee/0x150 vsock_remove_bound+0x187/0x1e0 __vsock_release+0x383/0x4a0 vsock_release+0x90/0x120 __sock_release+0xa3/0x250 sock_close+0x14/0x20 __fput+0x359/0xa80 task_work_run+0x107/0x1d0 do_exit+0x847/0x2560 do_group_exit+0xb8/0x250 __x64_sys_exit_group+0x3a/0x50 x64_sys_call+0xfec/0x14f0 do_syscall_64+0x93/0x1b0 entry_SYSCALL_64_after_hwframe+0x76/0x7e
- CVE-2025-21758:
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: add RCU protection to mld_newpack() mld_newpack() can be called without RTNL or RCU being held. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.
- CVE-2025-21759:
In the Linux kernel, the following vulnerability has been resolved: ipv6: mcast: extend RCU protection in igmp6_send() igmp6_send() can be called without RTNL or RCU being held. Extend RCU protection so that we can safely fetch the net pointer and avoid a potential UAF. Note that we no longer can use sock_alloc_send_skb() because ipv6.igmp_sk uses GFP_KERNEL allocations which can sleep. Instead use alloc_skb() and charge the net->ipv6.igmp_sk socket under RCU protection.
- CVE-2025-21760:
In the Linux kernel, the following vulnerability has been resolved: ndisc: extend RCU protection in ndisc_send_skb() ndisc_send_skb() can be called without RTNL or RCU held. Acquire rcu_read_lock() earlier, so that we can use dev_net_rcu() and avoid a potential UAF.
- CVE-2025-21761:
In the Linux kernel, the following vulnerability has been resolved: openvswitch: use RCU protection in ovs_vport_cmd_fill_info() ovs_vport_cmd_fill_info() can be called without RTNL or RCU. Use RCU protection and dev_net_rcu() to avoid potential UAF.
- CVE-2025-21762:
In the Linux kernel, the following vulnerability has been resolved: arp: use RCU protection in arp_xmit() arp_xmit() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
- CVE-2025-21763:
In the Linux kernel, the following vulnerability has been resolved: neighbour: use RCU protection in __neigh_notify() __neigh_notify() can be called without RTNL or RCU protection. Use RCU protection to avoid potential UAF.
- CVE-2025-21764:
In the Linux kernel, the following vulnerability has been resolved: ndisc: use RCU protection in ndisc_alloc_skb() ndisc_alloc_skb() can be called without RTNL or RCU being held. Add RCU protection to avoid possible UAF.
- CVE-2025-21765:
In the Linux kernel, the following vulnerability has been resolved: ipv6: use RCU protection in ip6_default_advmss() ip6_default_advmss() needs rcu protection to make sure the net structure it reads does not disappear.
- CVE-2025-21766:
In the Linux kernel, the following vulnerability has been resolved: ipv4: use RCU protection in __ip_rt_update_pmtu() __ip_rt_update_pmtu() must use RCU protection to make sure the net structure it reads does not disappear.
- CVE-2025-21767:
In the Linux kernel, the following vulnerability has been resolved: clocksource: Use migrate_disable() to avoid calling get_random_u32() in atomic context The following bug report happened with a PREEMPT_RT kernel: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 2012, name: kwatchdog preempt_count: 1, expected: 0 RCU nest depth: 0, expected: 0 get_random_u32+0x4f/0x110 clocksource_verify_choose_cpus+0xab/0x1a0 clocksource_verify_percpu.part.0+0x6b/0x330 clocksource_watchdog_kthread+0x193/0x1a0 It is due to the fact that clocksource_verify_choose_cpus() is invoked with preemption disabled. This function invokes get_random_u32() to obtain random numbers for choosing CPUs. The batched_entropy_32 local lock and/or the base_crng.lock spinlock in driver/char/random.c will be acquired during the call. In PREEMPT_RT kernel, they are both sleeping locks and so cannot be acquired in atomic context. Fix this problem by using migrate_disable() to allow smp_processor_id() to be reliably used without introducing atomic context. preempt_disable() is then called after clocksource_verify_choose_cpus() but before the clocksource measurement is being run to avoid introducing unexpected latency.
- CVE-2025-21768:
In the Linux kernel, the following vulnerability has been resolved: net: ipv6: fix dst ref loops in rpl, seg6 and ioam6 lwtunnels Some lwtunnels have a dst cache for post-transformation dst. If the packet destination did not change we may end up recording a reference to the lwtunnel in its own cache, and the lwtunnel state will never be freed. Discovered by the ioam6.sh test, kmemleak was recently fixed to catch per-cpu memory leaks. I'm not sure if rpl and seg6 can actually hit this, but in principle I don't see why not.
- CVE-2025-21772:
In the Linux kernel, the following vulnerability has been resolved: partitions: mac: fix handling of bogus partition table Fix several issues in partition probing: - The bailout for a bad partoffset must use put_dev_sector(), since the preceding read_part_sector() succeeded. - If the partition table claims a silly sector size like 0xfff bytes (which results in partition table entries straddling sector boundaries), bail out instead of accessing out-of-bounds memory. - We must not assume that the partition table contains proper NUL termination - use strnlen() and strncmp() instead of strlen() and strcmp().
- CVE-2025-21775:
In the Linux kernel, the following vulnerability has been resolved: can: ctucanfd: handle skb allocation failure If skb allocation fails, the pointer to struct can_frame is NULL. This is actually handled everywhere inside ctucan_err_interrupt() except for the only place. Add the missed NULL check. Found by Linux Verification Center (linuxtesting.org) with SVACE static analysis tool.
- CVE-2025-21776:
In the Linux kernel, the following vulnerability has been resolved: USB: hub: Ignore non-compliant devices with too many configs or interfaces Robert Morris created a test program which can cause usb_hub_to_struct_hub() to dereference a NULL or inappropriate pointer: Oops: general protection fault, probably for non-canonical address 0xcccccccccccccccc: 0000 [#1] SMP DEBUG_PAGEALLOC PTI CPU: 7 UID: 0 PID: 117 Comm: kworker/7:1 Not tainted 6.13.0-rc3-00017-gf44d154d6e3d #14 Hardware name: FreeBSD BHYVE/BHYVE, BIOS 14.0 10/17/2021 Workqueue: usb_hub_wq hub_event RIP: 0010:usb_hub_adjust_deviceremovable+0x78/0x110 ... Call Trace: <TASK> ? die_addr+0x31/0x80 ? exc_general_protection+0x1b4/0x3c0 ? asm_exc_general_protection+0x26/0x30 ? usb_hub_adjust_deviceremovable+0x78/0x110 hub_probe+0x7c7/0xab0 usb_probe_interface+0x14b/0x350 really_probe+0xd0/0x2d0 ? __pfx___device_attach_driver+0x10/0x10 __driver_probe_device+0x6e/0x110 driver_probe_device+0x1a/0x90 __device_attach_driver+0x7e/0xc0 bus_for_each_drv+0x7f/0xd0 __device_attach+0xaa/0x1a0 bus_probe_device+0x8b/0xa0 device_add+0x62e/0x810 usb_set_configuration+0x65d/0x990 usb_generic_driver_probe+0x4b/0x70 usb_probe_device+0x36/0xd0 The cause of this error is that the device has two interfaces, and the hub driver binds to interface 1 instead of interface 0, which is where usb_hub_to_struct_hub() looks. We can prevent the problem from occurring by refusing to accept hub devices that violate the USB spec by having more than one configuration or interface.
- CVE-2025-21779:
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Reject Hyper-V's SEND_IPI hypercalls if local APIC isn't in-kernel Advertise support for Hyper-V's SEND_IPI and SEND_IPI_EX hypercalls if and only if the local API is emulated/virtualized by KVM, and explicitly reject said hypercalls if the local APIC is emulated in userspace, i.e. don't rely on userspace to opt-in to KVM_CAP_HYPERV_ENFORCE_CPUID. Rejecting SEND_IPI and SEND_IPI_EX fixes a NULL-pointer dereference if Hyper-V enlightenments are exposed to the guest without an in-kernel local APIC: dump_stack+0xbe/0xfd __kasan_report.cold+0x34/0x84 kasan_report+0x3a/0x50 __apic_accept_irq+0x3a/0x5c0 kvm_hv_send_ipi.isra.0+0x34e/0x820 kvm_hv_hypercall+0x8d9/0x9d0 kvm_emulate_hypercall+0x506/0x7e0 __vmx_handle_exit+0x283/0xb60 vmx_handle_exit+0x1d/0xd0 vcpu_enter_guest+0x16b0/0x24c0 vcpu_run+0xc0/0x550 kvm_arch_vcpu_ioctl_run+0x170/0x6d0 kvm_vcpu_ioctl+0x413/0xb20 __se_sys_ioctl+0x111/0x160 do_syscal1_64+0x30/0x40 entry_SYSCALL_64_after_hwframe+0x67/0xd1 Note, checking the sending vCPU is sufficient, as the per-VM irqchip_mode can't be modified after vCPUs are created, i.e. if one vCPU has an in-kernel local APIC, then all vCPUs have an in-kernel local APIC.
- CVE-2025-21780:
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: avoid buffer overflow attach in smu_sys_set_pp_table() It malicious user provides a small pptable through sysfs and then a bigger pptable, it may cause buffer overflow attack in function smu_sys_set_pp_table().
- CVE-2025-21781:
In the Linux kernel, the following vulnerability has been resolved: batman-adv: fix panic during interface removal Reference counting is used to ensure that batadv_hardif_neigh_node and batadv_hard_iface are not freed before/during batadv_v_elp_throughput_metric_update work is finished. But there isn't a guarantee that the hard if will remain associated with a soft interface up until the work is finished. This fixes a crash triggered by reboot that looks like this: Call trace: batadv_v_mesh_free+0xd0/0x4dc [batman_adv] batadv_v_elp_throughput_metric_update+0x1c/0xa4 process_one_work+0x178/0x398 worker_thread+0x2e8/0x4d0 kthread+0xd8/0xdc ret_from_fork+0x10/0x20 (the batadv_v_mesh_free call is misleading, and does not actually happen) I was able to make the issue happen more reliably by changing hardif_neigh->bat_v.metric_work work to be delayed work. This allowed me to track down and confirm the fix. [sven@narfation.org: prevent entering batadv_v_elp_get_throughput without soft_iface]
- CVE-2025-21782:
In the Linux kernel, the following vulnerability has been resolved: orangefs: fix a oob in orangefs_debug_write I got a syzbot report: slab-out-of-bounds Read in orangefs_debug_write... several people suggested fixes, I tested Al Viro's suggestion and made this patch.
- CVE-2025-21785:
In the Linux kernel, the following vulnerability has been resolved: arm64: cacheinfo: Avoid out-of-bounds write to cacheinfo array The loop that detects/populates cache information already has a bounds check on the array size but does not account for cache levels with separate data/instructions cache. Fix this by incrementing the index for any populated leaf (instead of any populated level).
- CVE-2025-21787:
In the Linux kernel, the following vulnerability has been resolved: team: better TEAM_OPTION_TYPE_STRING validation syzbot reported following splat [1] Make sure user-provided data contains one nul byte. [1] BUG: KMSAN: uninit-value in string_nocheck lib/vsprintf.c:633 [inline] BUG: KMSAN: uninit-value in string+0x3ec/0x5f0 lib/vsprintf.c:714 string_nocheck lib/vsprintf.c:633 [inline] string+0x3ec/0x5f0 lib/vsprintf.c:714 vsnprintf+0xa5d/0x1960 lib/vsprintf.c:2843 __request_module+0x252/0x9f0 kernel/module/kmod.c:149 team_mode_get drivers/net/team/team_core.c:480 [inline] team_change_mode drivers/net/team/team_core.c:607 [inline] team_mode_option_set+0x437/0x970 drivers/net/team/team_core.c:1401 team_option_set drivers/net/team/team_core.c:375 [inline] team_nl_options_set_doit+0x1339/0x1f90 drivers/net/team/team_core.c:2662 genl_family_rcv_msg_doit net/netlink/genetlink.c:1115 [inline] genl_family_rcv_msg net/netlink/genetlink.c:1195 [inline] genl_rcv_msg+0x1214/0x12c0 net/netlink/genetlink.c:1210 netlink_rcv_skb+0x375/0x650 net/netlink/af_netlink.c:2543 genl_rcv+0x40/0x60 net/netlink/genetlink.c:1219 netlink_unicast_kernel net/netlink/af_netlink.c:1322 [inline] netlink_unicast+0xf52/0x1260 net/netlink/af_netlink.c:1348 netlink_sendmsg+0x10da/0x11e0 net/netlink/af_netlink.c:1892 sock_sendmsg_nosec net/socket.c:718 [inline] __sock_sendmsg+0x30f/0x380 net/socket.c:733 ____sys_sendmsg+0x877/0xb60 net/socket.c:2573 ___sys_sendmsg+0x28d/0x3c0 net/socket.c:2627 __sys_sendmsg net/socket.c:2659 [inline] __do_sys_sendmsg net/socket.c:2664 [inline] __se_sys_sendmsg net/socket.c:2662 [inline] __x64_sys_sendmsg+0x212/0x3c0 net/socket.c:2662 x64_sys_call+0x2ed6/0x3c30 arch/x86/include/generated/asm/syscalls_64.h:47 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x1e0 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f
- CVE-2025-21790:
In the Linux kernel, the following vulnerability has been resolved: vxlan: check vxlan_vnigroup_init() return value vxlan_init() must check vxlan_vnigroup_init() success otherwise a crash happens later, spotted by syzbot. Oops: general protection fault, probably for non-canonical address 0xdffffc000000002c: 0000 [#1] PREEMPT SMP KASAN NOPTI KASAN: null-ptr-deref in range [0x0000000000000160-0x0000000000000167] CPU: 0 UID: 0 PID: 7313 Comm: syz-executor147 Not tainted 6.14.0-rc1-syzkaller-00276-g69b54314c975 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:vxlan_vnigroup_uninit+0x89/0x500 drivers/net/vxlan/vxlan_vnifilter.c:912 Code: 00 48 8b 44 24 08 4c 8b b0 98 41 00 00 49 8d 86 60 01 00 00 48 89 c2 48 89 44 24 10 48 b8 00 00 00 00 00 fc ff df 48 c1 ea 03 <80> 3c 02 00 0f 85 4d 04 00 00 49 8b 86 60 01 00 00 48 ba 00 00 00 RSP: 0018:ffffc9000cc1eea8 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000001 RCX: ffffffff8672effb RDX: 000000000000002c RSI: ffffffff8672ecb9 RDI: ffff8880461b4f18 RBP: ffff8880461b4ef4 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000020000 R13: ffff8880461b0d80 R14: 0000000000000000 R15: dffffc0000000000 FS: 00007fecfa95d6c0(0000) GS:ffff88806a600000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fecfa95cfb8 CR3: 000000004472c000 CR4: 0000000000352ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> vxlan_uninit+0x1ab/0x200 drivers/net/vxlan/vxlan_core.c:2942 unregister_netdevice_many_notify+0x12d6/0x1f30 net/core/dev.c:11824 unregister_netdevice_many net/core/dev.c:11866 [inline] unregister_netdevice_queue+0x307/0x3f0 net/core/dev.c:11736 register_netdevice+0x1829/0x1eb0 net/core/dev.c:10901 __vxlan_dev_create+0x7c6/0xa30 drivers/net/vxlan/vxlan_core.c:3981 vxlan_newlink+0xd1/0x130 drivers/net/vxlan/vxlan_core.c:4407 rtnl_newlink_create net/core/rtnetlink.c:3795 [inline] __rtnl_newlink net/core/rtnetlink.c:3906 [inline]
- CVE-2025-21791:
In the Linux kernel, the following vulnerability has been resolved: vrf: use RCU protection in l3mdev_l3_out() l3mdev_l3_out() can be called without RCU being held: raw_sendmsg() ip_push_pending_frames() ip_send_skb() ip_local_out() __ip_local_out() l3mdev_ip_out() Add rcu_read_lock() / rcu_read_unlock() pair to avoid a potential UAF.
- CVE-2025-21792:
In the Linux kernel, the following vulnerability has been resolved: ax25: Fix refcount leak caused by setting SO_BINDTODEVICE sockopt If an AX25 device is bound to a socket by setting the SO_BINDTODEVICE socket option, a refcount leak will occur in ax25_release(). Commit 9fd75b66b8f6 ("ax25: Fix refcount leaks caused by ax25_cb_del()") added decrement of device refcounts in ax25_release(). In order for that to work correctly the refcounts must already be incremented when the device is bound to the socket. An AX25 device can be bound to a socket by either calling ax25_bind() or setting SO_BINDTODEVICE socket option. In both cases the refcounts should be incremented, but in fact it is done only in ax25_bind(). This bug leads to the following issue reported by Syzkaller: ================================================================ refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 1 PID: 5932 at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210 lib/refcount.c:31 Modules linked in: CPU: 1 UID: 0 PID: 5932 Comm: syz-executor424 Not tainted 6.13.0-rc4-syzkaller-00110-g4099a71718b0 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:refcount_warn_saturate+0x1ed/0x210 lib/refcount.c:31 Call Trace: <TASK> __refcount_dec include/linux/refcount.h:336 [inline] refcount_dec include/linux/refcount.h:351 [inline] ref_tracker_free+0x710/0x820 lib/ref_tracker.c:236 netdev_tracker_free include/linux/netdevice.h:4156 [inline] netdev_put include/linux/netdevice.h:4173 [inline] netdev_put include/linux/netdevice.h:4169 [inline] ax25_release+0x33f/0xa10 net/ax25/af_ax25.c:1069 __sock_release+0xb0/0x270 net/socket.c:640 sock_close+0x1c/0x30 net/socket.c:1408 ... do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... </TASK> ================================================================ Fix the implementation of ax25_setsockopt() by adding increment of refcounts for the new device bound, and decrement of refcounts for the old unbound device.
- CVE-2025-21794:
In the Linux kernel, the following vulnerability has been resolved: HID: hid-thrustmaster: fix stack-out-of-bounds read in usb_check_int_endpoints() Syzbot[1] has detected a stack-out-of-bounds read of the ep_addr array from hid-thrustmaster driver. This array is passed to usb_check_int_endpoints function from usb.c core driver, which executes a for loop that iterates over the elements of the passed array. Not finding a null element at the end of the array, it tries to read the next, non-existent element, crashing the kernel. To fix this, a 0 element was added at the end of the array to break the for loop. [1] https://syzkaller.appspot.com/bug?extid=9c9179ac46169c56c1ad
- CVE-2025-21795:
In the Linux kernel, the following vulnerability has been resolved: NFSD: fix hang in nfsd4_shutdown_callback If nfs4_client is in courtesy state then there is no point to send the callback. This causes nfsd4_shutdown_callback to hang since cl_cb_inflight is not 0. This hang lasts about 15 minutes until TCP notifies NFSD that the connection was dropped. This patch modifies nfsd4_run_cb_work to skip the RPC call if nfs4_client is in courtesy state.
- CVE-2025-21796:
In the Linux kernel, the following vulnerability has been resolved: nfsd: clear acl_access/acl_default after releasing them If getting acl_default fails, acl_access and acl_default will be released simultaneously. However, acl_access will still retain a pointer pointing to the released posix_acl, which will trigger a WARNING in nfs3svc_release_getacl like this: ------------[ cut here ]------------ refcount_t: underflow; use-after-free. WARNING: CPU: 26 PID: 3199 at lib/refcount.c:28 refcount_warn_saturate+0xb5/0x170 Modules linked in: CPU: 26 UID: 0 PID: 3199 Comm: nfsd Not tainted 6.12.0-rc6-00079-g04ae226af01f-dirty #8 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.1-2.fc37 04/01/2014 RIP: 0010:refcount_warn_saturate+0xb5/0x170 Code: cc cc 0f b6 1d b3 20 a5 03 80 fb 01 0f 87 65 48 d8 00 83 e3 01 75 e4 48 c7 c7 c0 3b 9b 85 c6 05 97 20 a5 03 01 e8 fb 3e 30 ff <0f> 0b eb cd 0f b6 1d 8a3 RSP: 0018:ffffc90008637cd8 EFLAGS: 00010282 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff83904fde RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88871ed36380 RBP: ffff888158beeb40 R08: 0000000000000001 R09: fffff520010c6f56 R10: ffffc90008637ab7 R11: 0000000000000001 R12: 0000000000000001 R13: ffff888140e77400 R14: ffff888140e77408 R15: ffffffff858b42c0 FS: 0000000000000000(0000) GS:ffff88871ed00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000562384d32158 CR3: 000000055cc6a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> ? refcount_warn_saturate+0xb5/0x170 ? __warn+0xa5/0x140 ? refcount_warn_saturate+0xb5/0x170 ? report_bug+0x1b1/0x1e0 ? handle_bug+0x53/0xa0 ? exc_invalid_op+0x17/0x40 ? asm_exc_invalid_op+0x1a/0x20 ? tick_nohz_tick_stopped+0x1e/0x40 ? refcount_warn_saturate+0xb5/0x170 ? refcount_warn_saturate+0xb5/0x170 nfs3svc_release_getacl+0xc9/0xe0 svc_process_common+0x5db/0xb60 ? __pfx_svc_process_common+0x10/0x10 ? __rcu_read_unlock+0x69/0xa0 ? __pfx_nfsd_dispatch+0x10/0x10 ? svc_xprt_received+0xa1/0x120 ? xdr_init_decode+0x11d/0x190 svc_process+0x2a7/0x330 svc_handle_xprt+0x69d/0x940 svc_recv+0x180/0x2d0 nfsd+0x168/0x200 ? __pfx_nfsd+0x10/0x10 kthread+0x1a2/0x1e0 ? kthread+0xf4/0x1e0 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x34/0x60 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1a/0x30 </TASK> Kernel panic - not syncing: kernel: panic_on_warn set ... Clear acl_access/acl_default after posix_acl_release is called to prevent UAF from being triggered.
- CVE-2025-21799:
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: fix freeing IRQ in am65_cpsw_nuss_remove_tx_chns() When getting the IRQ we use k3_udma_glue_tx_get_irq() which returns negative error value on error. So not NULL check is not sufficient to deteremine if IRQ is valid. Check that IRQ is greater then zero to ensure it is valid. There is no issue at probe time but at runtime user can invoke .set_channels which results in the following call chain. am65_cpsw_set_channels() am65_cpsw_nuss_update_tx_rx_chns() am65_cpsw_nuss_remove_tx_chns() am65_cpsw_nuss_init_tx_chns() At this point if am65_cpsw_nuss_init_tx_chns() fails due to k3_udma_glue_tx_get_irq() then tx_chn->irq will be set to a negative value. Then, at subsequent .set_channels with higher channel count we will attempt to free an invalid IRQ in am65_cpsw_nuss_remove_tx_chns() leading to a kernel warning. The issue is present in the original commit that introduced this driver, although there, am65_cpsw_nuss_update_tx_rx_chns() existed as am65_cpsw_nuss_update_tx_chns().
- CVE-2025-21801:
In the Linux kernel, the following vulnerability has been resolved: net: ravb: Fix missing rtnl lock in suspend/resume path Fix the suspend/resume path by ensuring the rtnl lock is held where required. Calls to ravb_open, ravb_close and wol operations must be performed under the rtnl lock to prevent conflicts with ongoing ndo operations. Without this fix, the following warning is triggered: [ 39.032969] ============================= [ 39.032983] WARNING: suspicious RCU usage [ 39.033019] ----------------------------- [ 39.033033] drivers/net/phy/phy_device.c:2004 suspicious rcu_dereference_protected() usage! ... [ 39.033597] stack backtrace: [ 39.033613] CPU: 0 UID: 0 PID: 174 Comm: python3 Not tainted 6.13.0-rc7-next-20250116-arm64-renesas-00002-g35245dfdc62c #7 [ 39.033623] Hardware name: Renesas SMARC EVK version 2 based on r9a08g045s33 (DT) [ 39.033628] Call trace: [ 39.033633] show_stack+0x14/0x1c (C) [ 39.033652] dump_stack_lvl+0xb4/0xc4 [ 39.033664] dump_stack+0x14/0x1c [ 39.033671] lockdep_rcu_suspicious+0x16c/0x22c [ 39.033682] phy_detach+0x160/0x190 [ 39.033694] phy_disconnect+0x40/0x54 [ 39.033703] ravb_close+0x6c/0x1cc [ 39.033714] ravb_suspend+0x48/0x120 [ 39.033721] dpm_run_callback+0x4c/0x14c [ 39.033731] device_suspend+0x11c/0x4dc [ 39.033740] dpm_suspend+0xdc/0x214 [ 39.033748] dpm_suspend_start+0x48/0x60 [ 39.033758] suspend_devices_and_enter+0x124/0x574 [ 39.033769] pm_suspend+0x1ac/0x274 [ 39.033778] state_store+0x88/0x124 [ 39.033788] kobj_attr_store+0x14/0x24 [ 39.033798] sysfs_kf_write+0x48/0x6c [ 39.033808] kernfs_fop_write_iter+0x118/0x1a8 [ 39.033817] vfs_write+0x27c/0x378 [ 39.033825] ksys_write+0x64/0xf4 [ 39.033833] __arm64_sys_write+0x18/0x20 [ 39.033841] invoke_syscall+0x44/0x104 [ 39.033852] el0_svc_common.constprop.0+0xb4/0xd4 [ 39.033862] do_el0_svc+0x18/0x20 [ 39.033870] el0_svc+0x3c/0xf0 [ 39.033880] el0t_64_sync_handler+0xc0/0xc4 [ 39.033888] el0t_64_sync+0x154/0x158 [ 39.041274] ravb 11c30000.ethernet eth0: Link is Down
- CVE-2025-21802:
In the Linux kernel, the following vulnerability has been resolved: net: hns3: fix oops when unload drivers paralleling When unload hclge driver, it tries to disable sriov first for each ae_dev node from hnae3_ae_dev_list. If user unloads hns3 driver at the time, because it removes all the ae_dev nodes, and it may cause oops. But we can't simply use hnae3_common_lock for this. Because in the process flow of pci_disable_sriov(), it will trigger the remove flow of VF, which will also take hnae3_common_lock. To fixes it, introduce a new mutex to protect the unload process.
- CVE-2025-21804:
In the Linux kernel, the following vulnerability has been resolved: PCI: rcar-ep: Fix incorrect variable used when calling devm_request_mem_region() The rcar_pcie_parse_outbound_ranges() uses the devm_request_mem_region() macro to request a needed resource. A string variable that lives on the stack is then used to store a dynamically computed resource name, which is then passed on as one of the macro arguments. This can lead to undefined behavior. Depending on the current contents of the memory, the manifestations of errors may vary. One possible output may be as follows: $ cat /proc/iomem 30000000-37ffffff : 38000000-3fffffff : Sometimes, garbage may appear after the colon. In very rare cases, if no NULL-terminator is found in memory, the system might crash because the string iterator will overrun which can lead to access of unmapped memory above the stack. Thus, fix this by replacing outbound_name with the name of the previously requested resource. With the changes applied, the output will be as follows: $ cat /proc/iomem 30000000-37ffffff : memory2 38000000-3fffffff : memory3 [kwilczynski: commit log]
- CVE-2025-21806:
In the Linux kernel, the following vulnerability has been resolved: net: let net.core.dev_weight always be non-zero The following problem was encountered during stability test: (NULL net_device): NAPI poll function process_backlog+0x0/0x530 \ returned 1, exceeding its budget of 0. ------------[ cut here ]------------ list_add double add: new=ffff88905f746f48, prev=ffff88905f746f48, \ next=ffff88905f746e40. WARNING: CPU: 18 PID: 5462 at lib/list_debug.c:35 \ __list_add_valid_or_report+0xf3/0x130 CPU: 18 UID: 0 PID: 5462 Comm: ping Kdump: loaded Not tainted 6.13.0-rc7+ RIP: 0010:__list_add_valid_or_report+0xf3/0x130 Call Trace: ? __warn+0xcd/0x250 ? __list_add_valid_or_report+0xf3/0x130 enqueue_to_backlog+0x923/0x1070 netif_rx_internal+0x92/0x2b0 __netif_rx+0x15/0x170 loopback_xmit+0x2ef/0x450 dev_hard_start_xmit+0x103/0x490 __dev_queue_xmit+0xeac/0x1950 ip_finish_output2+0x6cc/0x1620 ip_output+0x161/0x270 ip_push_pending_frames+0x155/0x1a0 raw_sendmsg+0xe13/0x1550 __sys_sendto+0x3bf/0x4e0 __x64_sys_sendto+0xdc/0x1b0 do_syscall_64+0x5b/0x170 entry_SYSCALL_64_after_hwframe+0x76/0x7e The reproduction command is as follows: sysctl -w net.core.dev_weight=0 ping 127.0.0.1 This is because when the napi's weight is set to 0, process_backlog() may return 0 and clear the NAPI_STATE_SCHED bit of napi->state, causing this napi to be re-polled in net_rx_action() until __do_softirq() times out. Since the NAPI_STATE_SCHED bit has been cleared, napi_schedule_rps() can be retriggered in enqueue_to_backlog(), causing this issue. Making the napi's weight always non-zero solves this problem. Triggering this issue requires system-wide admin (setting is not namespaced).
- CVE-2025-21811:
In the Linux kernel, the following vulnerability has been resolved: nilfs2: protect access to buffers with no active references nilfs_lookup_dirty_data_buffers(), which iterates through the buffers attached to dirty data folios/pages, accesses the attached buffers without locking the folios/pages. For data cache, nilfs_clear_folio_dirty() may be called asynchronously when the file system degenerates to read only, so nilfs_lookup_dirty_data_buffers() still has the potential to cause use after free issues when buffers lose the protection of their dirty state midway due to this asynchronous clearing and are unintentionally freed by try_to_free_buffers(). Eliminate this race issue by adjusting the lock section in this function.
- CVE-2025-21812:
In the Linux kernel, the following vulnerability has been resolved: ax25: rcu protect dev->ax25_ptr syzbot found a lockdep issue [1]. We should remove ax25 RTNL dependency in ax25_setsockopt() This should also fix a variety of possible UAF in ax25. [1] WARNING: possible circular locking dependency detected 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Not tainted ------------------------------------------------------ syz.5.1818/12806 is trying to acquire lock: ffffffff8fcb3988 (rtnl_mutex){+.+.}-{4:4}, at: ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 but task is already holding lock: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (sk_lock-AF_AX25){+.+.}-{0:0}: lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 lock_sock_nested+0x48/0x100 net/core/sock.c:3642 lock_sock include/net/sock.h:1618 [inline] ax25_kill_by_device net/ax25/af_ax25.c:101 [inline] ax25_device_event+0x24d/0x580 net/ax25/af_ax25.c:146 notifier_call_chain+0x1a5/0x3f0 kernel/notifier.c:85 __dev_notify_flags+0x207/0x400 dev_change_flags+0xf0/0x1a0 net/core/dev.c:9026 dev_ifsioc+0x7c8/0xe70 net/core/dev_ioctl.c:563 dev_ioctl+0x719/0x1340 net/core/dev_ioctl.c:820 sock_do_ioctl+0x240/0x460 net/socket.c:1234 sock_ioctl+0x626/0x8e0 net/socket.c:1339 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:906 [inline] __se_sys_ioctl+0xf5/0x170 fs/ioctl.c:892 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (rtnl_mutex){+.+.}-{4:4}: check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/locking/lockdep.c:3280 [inline] validate_chain+0x18ef/0x5920 kernel/locking/lockdep.c:3904 __lock_acquire+0x1397/0x2100 kernel/locking/lockdep.c:5226 lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5849 __mutex_lock_common kernel/locking/mutex.c:585 [inline] __mutex_lock+0x1ac/0xee0 kernel/locking/mutex.c:735 ax25_setsockopt+0xa55/0xe90 net/ax25/af_ax25.c:680 do_sock_setsockopt+0x3af/0x720 net/socket.c:2324 __sys_setsockopt net/socket.c:2349 [inline] __do_sys_setsockopt net/socket.c:2355 [inline] __se_sys_setsockopt net/socket.c:2352 [inline] __x64_sys_setsockopt+0x1ee/0x280 net/socket.c:2352 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(sk_lock-AF_AX25); lock(rtnl_mutex); lock(sk_lock-AF_AX25); lock(rtnl_mutex); *** DEADLOCK *** 1 lock held by syz.5.1818/12806: #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: lock_sock include/net/sock.h:1618 [inline] #0: ffff8880617ac258 (sk_lock-AF_AX25){+.+.}-{0:0}, at: ax25_setsockopt+0x209/0xe90 net/ax25/af_ax25.c:574 stack backtrace: CPU: 1 UID: 0 PID: 12806 Comm: syz.5.1818 Not tainted 6.13.0-rc3-syzkaller-00762-g9268abe611b0 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024 Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120 print_circular_bug+0x13a/0x1b0 kernel/locking/lockdep.c:2074 check_noncircular+0x36a/0x4a0 kernel/locking/lockdep.c:2206 check_prev_add kernel/locking/lockdep.c:3161 [inline] check_prevs_add kernel/lockin ---truncated---
- CVE-2025-21814:
In the Linux kernel, the following vulnerability has been resolved: ptp: Ensure info->enable callback is always set The ioctl and sysfs handlers unconditionally call the ->enable callback. Not all drivers implement that callback, leading to NULL dereferences. Example of affected drivers: ptp_s390.c, ptp_vclock.c and ptp_mock.c. Instead use a dummy callback if no better was specified by the driver.
- CVE-2025-21816:
In the Linux kernel, the following vulnerability has been resolved: hrtimers: Force migrate away hrtimers queued after CPUHP_AP_HRTIMERS_DYING hrtimers are migrated away from the dying CPU to any online target at the CPUHP_AP_HRTIMERS_DYING stage in order not to delay bandwidth timers handling tasks involved in the CPU hotplug forward progress. However wakeups can still be performed by the outgoing CPU after CPUHP_AP_HRTIMERS_DYING. Those can result again in bandwidth timers being armed. Depending on several considerations (crystal ball power management based election, earliest timer already enqueued, timer migration enabled or not), the target may eventually be the current CPU even if offline. If that happens, the timer is eventually ignored. The most notable example is RCU which had to deal with each and every of those wake-ups by deferring them to an online CPU, along with related workarounds: _ e787644caf76 (rcu: Defer RCU kthreads wakeup when CPU is dying) _ 9139f93209d1 (rcu/nocb: Fix RT throttling hrtimer armed from offline CPU) _ f7345ccc62a4 (rcu/nocb: Fix rcuog wake-up from offline softirq) The problem isn't confined to RCU though as the stop machine kthread (which runs CPUHP_AP_HRTIMERS_DYING) reports its completion at the end of its work through cpu_stop_signal_done() and performs a wake up that eventually arms the deadline server timer: WARNING: CPU: 94 PID: 588 at kernel/time/hrtimer.c:1086 hrtimer_start_range_ns+0x289/0x2d0 CPU: 94 UID: 0 PID: 588 Comm: migration/94 Not tainted Stopper: multi_cpu_stop+0x0/0x120 <- stop_machine_cpuslocked+0x66/0xc0 RIP: 0010:hrtimer_start_range_ns+0x289/0x2d0 Call Trace: <TASK> start_dl_timer enqueue_dl_entity dl_server_start enqueue_task_fair enqueue_task ttwu_do_activate try_to_wake_up complete cpu_stopper_thread Instead of providing yet another bandaid to work around the situation, fix it in the hrtimers infrastructure instead: always migrate away a timer to an online target whenever it is enqueued from an offline CPU. This will also allow to revert all the above RCU disgraceful hacks.
- CVE-2025-21817:
In the Linux kernel, the following vulnerability has been resolved: block: mark GFP_NOIO around sysfs ->store() sysfs ->store is called with queue freezed, meantime we have several ->store() callbacks(update_nr_requests, wbt, scheduler) to allocate memory with GFP_KERNEL which may run into direct reclaim code path, then potential deadlock can be caused. Fix the issue by marking NOIO around sysfs ->store()
- CVE-2025-21819:
In the Linux kernel, the following vulnerability has been resolved: Revert "drm/amd/display: Use HW lock mgr for PSR1" This reverts commit a2b5a9956269 ("drm/amd/display: Use HW lock mgr for PSR1") Because it may cause system hang while connect with two edp panel.
- CVE-2025-21820:
In the Linux kernel, the following vulnerability has been resolved: tty: xilinx_uartps: split sysrq handling lockdep detects the following circular locking dependency: CPU 0 CPU 1 ========================== ============================ cdns_uart_isr() printk() uart_port_lock(port) console_lock() cdns_uart_console_write() if (!port->sysrq) uart_port_lock(port) uart_handle_break() port->sysrq = ... uart_handle_sysrq_char() printk() console_lock() The fixed commit attempts to avoid this situation by only taking the port lock in cdns_uart_console_write if port->sysrq unset. However, if (as shown above) cdns_uart_console_write runs before port->sysrq is set, then it will try to take the port lock anyway. This may result in a deadlock. Fix this by splitting sysrq handling into two parts. We use the prepare helper under the port lock and defer handling until we release the lock.
- CVE-2025-21821:
In the Linux kernel, the following vulnerability has been resolved: fbdev: omap: use threaded IRQ for LCD DMA When using touchscreen and framebuffer, Nokia 770 crashes easily with: BUG: scheduling while atomic: irq/144-ads7846/82/0x00010000 Modules linked in: usb_f_ecm g_ether usb_f_rndis u_ether libcomposite configfs omap_udc ohci_omap ohci_hcd CPU: 0 UID: 0 PID: 82 Comm: irq/144-ads7846 Not tainted 6.12.7-770 #2 Hardware name: Nokia 770 Call trace: unwind_backtrace from show_stack+0x10/0x14 show_stack from dump_stack_lvl+0x54/0x5c dump_stack_lvl from __schedule_bug+0x50/0x70 __schedule_bug from __schedule+0x4d4/0x5bc __schedule from schedule+0x34/0xa0 schedule from schedule_preempt_disabled+0xc/0x10 schedule_preempt_disabled from __mutex_lock.constprop.0+0x218/0x3b4 __mutex_lock.constprop.0 from clk_prepare_lock+0x38/0xe4 clk_prepare_lock from clk_set_rate+0x18/0x154 clk_set_rate from sossi_read_data+0x4c/0x168 sossi_read_data from hwa742_read_reg+0x5c/0x8c hwa742_read_reg from send_frame_handler+0xfc/0x300 send_frame_handler from process_pending_requests+0x74/0xd0 process_pending_requests from lcd_dma_irq_handler+0x50/0x74 lcd_dma_irq_handler from __handle_irq_event_percpu+0x44/0x130 __handle_irq_event_percpu from handle_irq_event+0x28/0x68 handle_irq_event from handle_level_irq+0x9c/0x170 handle_level_irq from generic_handle_domain_irq+0x2c/0x3c generic_handle_domain_irq from omap1_handle_irq+0x40/0x8c omap1_handle_irq from generic_handle_arch_irq+0x28/0x3c generic_handle_arch_irq from call_with_stack+0x1c/0x24 call_with_stack from __irq_svc+0x94/0xa8 Exception stack(0xc5255da0 to 0xc5255de8) 5da0: 00000001 c22fc620 00000000 00000000 c08384a8 c106fc00 00000000 c240c248 5dc0: c113a600 c3f6ec30 00000001 00000000 c22fc620 c5255df0 c22fc620 c0279a94 5de0: 60000013 ffffffff __irq_svc from clk_prepare_lock+0x4c/0xe4 clk_prepare_lock from clk_get_rate+0x10/0x74 clk_get_rate from uwire_setup_transfer+0x40/0x180 uwire_setup_transfer from spi_bitbang_transfer_one+0x2c/0x9c spi_bitbang_transfer_one from spi_transfer_one_message+0x2d0/0x664 spi_transfer_one_message from __spi_pump_transfer_message+0x29c/0x498 __spi_pump_transfer_message from __spi_sync+0x1f8/0x2e8 __spi_sync from spi_sync+0x24/0x40 spi_sync from ads7846_halfd_read_state+0x5c/0x1c0 ads7846_halfd_read_state from ads7846_irq+0x58/0x348 ads7846_irq from irq_thread_fn+0x1c/0x78 irq_thread_fn from irq_thread+0x120/0x228 irq_thread from kthread+0xc8/0xe8 kthread from ret_from_fork+0x14/0x28 As a quick fix, switch to a threaded IRQ which provides a stable system.
- CVE-2025-21823:
In the Linux kernel, the following vulnerability has been resolved: batman-adv: Drop unmanaged ELP metric worker The ELP worker needs to calculate new metric values for all neighbors "reachable" over an interface. Some of the used metric sources require locks which might need to sleep. This sleep is incompatible with the RCU list iterator used for the recorded neighbors. The initial approach to work around of this problem was to queue another work item per neighbor and then run this in a new context. Even when this solved the RCU vs might_sleep() conflict, it has a major problems: Nothing was stopping the work item in case it is not needed anymore - for example because one of the related interfaces was removed or the batman-adv module was unloaded - resulting in potential invalid memory accesses. Directly canceling the metric worker also has various problems: * cancel_work_sync for a to-be-deactivated interface is called with rtnl_lock held. But the code in the ELP metric worker also tries to use rtnl_lock() - which will never return in this case. This also means that cancel_work_sync would never return because it is waiting for the worker to finish. * iterating over the neighbor list for the to-be-deactivated interface is currently done using the RCU specific methods. Which means that it is possible to miss items when iterating over it without the associated spinlock - a behaviour which is acceptable for a periodic metric check but not for a cleanup routine (which must "stop" all still running workers) The better approch is to get rid of the per interface neighbor metric worker and handle everything in the interface worker. The original problems are solved by: * creating a list of neighbors which require new metric information inside the RCU protected context, gathering the metric according to the new list outside the RCU protected context * only use rcu_trylock inside metric gathering code to avoid a deadlock when the cancel_delayed_work_sync is called in the interface removal code (which is called with the rtnl_lock held)
- CVE-2025-21825:
In the Linux kernel, the following vulnerability has been resolved: bpf: Cancel the running bpf_timer through kworker for PREEMPT_RT During the update procedure, when overwrite element in a pre-allocated htab, the freeing of old_element is protected by the bucket lock. The reason why the bucket lock is necessary is that the old_element has already been stashed in htab->extra_elems after alloc_htab_elem() returns. If freeing the old_element after the bucket lock is unlocked, the stashed element may be reused by concurrent update procedure and the freeing of old_element will run concurrently with the reuse of the old_element. However, the invocation of check_and_free_fields() may acquire a spin-lock which violates the lockdep rule because its caller has already held a raw-spin-lock (bucket lock). The following warning will be reported when such race happens: BUG: scheduling while atomic: test_progs/676/0x00000003 3 locks held by test_progs/676: #0: ffffffff864b0240 (rcu_read_lock_trace){....}-{0:0}, at: bpf_prog_test_run_syscall+0x2c0/0x830 #1: ffff88810e961188 (&htab->lockdep_key){....}-{2:2}, at: htab_map_update_elem+0x306/0x1500 #2: ffff8881f4eac1b8 (&base->softirq_expiry_lock){....}-{2:2}, at: hrtimer_cancel_wait_running+0xe9/0x1b0 Modules linked in: bpf_testmod(O) Preemption disabled at: [<ffffffff817837a3>] htab_map_update_elem+0x293/0x1500 CPU: 0 UID: 0 PID: 676 Comm: test_progs Tainted: G ... 6.12.0+ #11 Tainted: [W]=WARN, [O]=OOT_MODULE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)... Call Trace: <TASK> dump_stack_lvl+0x57/0x70 dump_stack+0x10/0x20 __schedule_bug+0x120/0x170 __schedule+0x300c/0x4800 schedule_rtlock+0x37/0x60 rtlock_slowlock_locked+0x6d9/0x54c0 rt_spin_lock+0x168/0x230 hrtimer_cancel_wait_running+0xe9/0x1b0 hrtimer_cancel+0x24/0x30 bpf_timer_delete_work+0x1d/0x40 bpf_timer_cancel_and_free+0x5e/0x80 bpf_obj_free_fields+0x262/0x4a0 check_and_free_fields+0x1d0/0x280 htab_map_update_elem+0x7fc/0x1500 bpf_prog_9f90bc20768e0cb9_overwrite_cb+0x3f/0x43 bpf_prog_ea601c4649694dbd_overwrite_timer+0x5d/0x7e bpf_prog_test_run_syscall+0x322/0x830 __sys_bpf+0x135d/0x3ca0 __x64_sys_bpf+0x75/0xb0 x64_sys_call+0x1b5/0xa10 do_syscall_64+0x3b/0xc0 entry_SYSCALL_64_after_hwframe+0x4b/0x53 ... </TASK> It seems feasible to break the reuse and refill of per-cpu extra_elems into two independent parts: reuse the per-cpu extra_elems with bucket lock being held and refill the old_element as per-cpu extra_elems after the bucket lock is unlocked. However, it will make the concurrent overwrite procedures on the same CPU return unexpected -E2BIG error when the map is full. Therefore, the patch fixes the lock problem by breaking the cancelling of bpf_timer into two steps for PREEMPT_RT: 1) use hrtimer_try_to_cancel() and check its return value 2) if the timer is running, use hrtimer_cancel() through a kworker to cancel it again Considering that the current implementation of hrtimer_cancel() will try to acquire a being held softirq_expiry_lock when the current timer is running, these steps above are reasonable. However, it also has downside. When the timer is running, the cancelling of the timer is delayed when releasing the last map uref. The delay is also fixable (e.g., break the cancelling of bpf timer into two parts: one part in locked scope, another one in unlocked scope), it can be revised later if necessary. It is a bit hard to decide the right fix tag. One reason is that the problem depends on PREEMPT_RT which is enabled in v6.12. Considering the softirq_expiry_lock lock exists since v5.4 and bpf_timer is introduced in v5.15, the bpf_timer commit is used in the fixes tag and an extra depends-on tag is added to state the dependency on PREEMPT_RT. Depends-on: v6.12+ with PREEMPT_RT enabled
- CVE-2025-21826:
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: reject mismatching sum of field_len with set key length The field length description provides the length of each separated key field in the concatenation, each field gets rounded up to 32-bits to calculate the pipapo rule width from pipapo_init(). The set key length provides the total size of the key aligned to 32-bits. Register-based arithmetics still allows for combining mismatching set key length and field length description, eg. set key length 10 and field description [ 5, 4 ] leading to pipapo width of 12.
- CVE-2025-21829:
In the Linux kernel, the following vulnerability has been resolved: RDMA/rxe: Fix the warning "__rxe_cleanup+0x12c/0x170 [rdma_rxe]" The Call Trace is as below: " <TASK> ? show_regs.cold+0x1a/0x1f ? __rxe_cleanup+0x12c/0x170 [rdma_rxe] ? __warn+0x84/0xd0 ? __rxe_cleanup+0x12c/0x170 [rdma_rxe] ? report_bug+0x105/0x180 ? handle_bug+0x46/0x80 ? exc_invalid_op+0x19/0x70 ? asm_exc_invalid_op+0x1b/0x20 ? __rxe_cleanup+0x12c/0x170 [rdma_rxe] ? __rxe_cleanup+0x124/0x170 [rdma_rxe] rxe_destroy_qp.cold+0x24/0x29 [rdma_rxe] ib_destroy_qp_user+0x118/0x190 [ib_core] rdma_destroy_qp.cold+0x43/0x5e [rdma_cm] rtrs_cq_qp_destroy.cold+0x1d/0x2b [rtrs_core] rtrs_srv_close_work.cold+0x1b/0x31 [rtrs_server] process_one_work+0x21d/0x3f0 worker_thread+0x4a/0x3c0 ? process_one_work+0x3f0/0x3f0 kthread+0xf0/0x120 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK> " When too many rdma resources are allocated, rxe needs more time to handle these rdma resources. Sometimes with the current timeout, rxe can not release the rdma resources correctly. Compared with other rdma drivers, a bigger timeout is used.
- CVE-2025-21830:
In the Linux kernel, the following vulnerability has been resolved: landlock: Handle weird files A corrupted filesystem (e.g. bcachefs) might return weird files. Instead of throwing a warning and allowing access to such file, treat them as regular files.
- CVE-2025-21831:
In the Linux kernel, the following vulnerability has been resolved: PCI: Avoid putting some root ports into D3 on TUXEDO Sirius Gen1 commit 9d26d3a8f1b0 ("PCI: Put PCIe ports into D3 during suspend") sets the policy that all PCIe ports are allowed to use D3. When the system is suspended if the port is not power manageable by the platform and won't be used for wakeup via a PME this sets up the policy for these ports to go into D3hot. This policy generally makes sense from an OSPM perspective but it leads to problems with wakeup from suspend on the TUXEDO Sirius 16 Gen 1 with a specific old BIOS. This manifests as a system hang. On the affected Device + BIOS combination, add a quirk for the root port of the problematic controller to ensure that these root ports are not put into D3hot at suspend. This patch is based on https://lore.kernel.org/linux-pci/20230708214457.1229-2-mario.limonciello@amd.com but with the added condition both in the documentation and in the code to apply only to the TUXEDO Sirius 16 Gen 1 with a specific old BIOS and only the affected root ports.
- CVE-2025-21832:
In the Linux kernel, the following vulnerability has been resolved: block: don't revert iter for -EIOCBQUEUED blkdev_read_iter() has a few odd checks, like gating the position and count adjustment on whether or not the result is bigger-than-or-equal to zero (where bigger than makes more sense), and not checking the return value of blkdev_direct_IO() before doing an iov_iter_revert(). The latter can lead to attempting to revert with a negative value, which when passed to iov_iter_revert() as an unsigned value will lead to throwing a WARN_ON() because unroll is bigger than MAX_RW_COUNT. Be sane and don't revert for -EIOCBQUEUED, like what is done in other spots.
- CVE-2025-21833:
In the Linux kernel, the following vulnerability has been resolved: iommu/vt-d: Avoid use of NULL after WARN_ON_ONCE There is a WARN_ON_ONCE to catch an unlikely situation when domain_remove_dev_pasid can't find the `pasid`. In case it nevertheless happens we must avoid using a NULL pointer.
- CVE-2025-21835:
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: f_midi: fix MIDI Streaming descriptor lengths While the MIDI jacks are configured correctly, and the MIDIStreaming endpoint descriptors are filled with the correct information, bNumEmbMIDIJack and bLength are set incorrectly in these descriptors. This does not matter when the numbers of in and out ports are equal, but when they differ the host will receive broken descriptors with uninitialized stack memory leaking into the descriptor for whichever value is smaller. The precise meaning of "in" and "out" in the port counts is not clearly defined and can be confusing. But elsewhere the driver consistently uses this to match the USB meaning of IN and OUT viewed from the host, so that "in" ports send data to the host and "out" ports receive data from it.
- CVE-2025-21836:
In the Linux kernel, the following vulnerability has been resolved: io_uring/kbuf: reallocate buf lists on upgrade IORING_REGISTER_PBUF_RING can reuse an old struct io_buffer_list if it was created for legacy selected buffer and has been emptied. It violates the requirement that most of the field should stay stable after publish. Always reallocate it instead.
- CVE-2025-21838:
In the Linux kernel, the following vulnerability has been resolved: usb: gadget: core: flush gadget workqueue after device removal device_del() can lead to new work being scheduled in gadget->work workqueue. This is observed, for example, with the dwc3 driver with the following call stack: device_del() gadget_unbind_driver() usb_gadget_disconnect_locked() dwc3_gadget_pullup() dwc3_gadget_soft_disconnect() usb_gadget_set_state() schedule_work(&gadget->work) Move flush_work() after device_del() to ensure the workqueue is cleaned up.
- CVE-2025-21839:
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Load DR6 with guest value only before entering .vcpu_run() loop Move the conditional loading of hardware DR6 with the guest's DR6 value out of the core .vcpu_run() loop to fix a bug where KVM can load hardware with a stale vcpu->arch.dr6. When the guest accesses a DR and host userspace isn't debugging the guest, KVM disables DR interception and loads the guest's values into hardware on VM-Enter and saves them on VM-Exit. This allows the guest to access DRs at will, e.g. so that a sequence of DR accesses to configure a breakpoint only generates one VM-Exit. For DR0-DR3, the logic/behavior is identical between VMX and SVM, and also identical between KVM_DEBUGREG_BP_ENABLED (userspace debugging the guest) and KVM_DEBUGREG_WONT_EXIT (guest using DRs), and so KVM handles loading DR0-DR3 in common code, _outside_ of the core kvm_x86_ops.vcpu_run() loop. But for DR6, the guest's value doesn't need to be loaded into hardware for KVM_DEBUGREG_BP_ENABLED, and SVM provides a dedicated VMCB field whereas VMX requires software to manually load the guest value, and so loading the guest's value into DR6 is handled by {svm,vmx}_vcpu_run(), i.e. is done _inside_ the core run loop. Unfortunately, saving the guest values on VM-Exit is initiated by common x86, again outside of the core run loop. If the guest modifies DR6 (in hardware, when DR interception is disabled), and then the next VM-Exit is a fastpath VM-Exit, KVM will reload hardware DR6 with vcpu->arch.dr6 and clobber the guest's actual value. The bug shows up primarily with nested VMX because KVM handles the VMX preemption timer in the fastpath, and the window between hardware DR6 being modified (in guest context) and DR6 being read by guest software is orders of magnitude larger in a nested setup. E.g. in non-nested, the VMX preemption timer would need to fire precisely between #DB injection and the #DB handler's read of DR6, whereas with a KVM-on-KVM setup, the window where hardware DR6 is "dirty" extends all the way from L1 writing DR6 to VMRESUME (in L1). L1's view: ========== <L1 disables DR interception> CPU 0/KVM-7289 [023] d.... 2925.640961: kvm_entry: vcpu 0 A: L1 Writes DR6 CPU 0/KVM-7289 [023] d.... 2925.640963: <hack>: Set DRs, DR6 = 0xffff0ff1 B: CPU 0/KVM-7289 [023] d.... 2925.640967: kvm_exit: vcpu 0 reason EXTERNAL_INTERRUPT intr_info 0x800000ec D: L1 reads DR6, arch.dr6 = 0 CPU 0/KVM-7289 [023] d.... 2925.640969: <hack>: Sync DRs, DR6 = 0xffff0ff0 CPU 0/KVM-7289 [023] d.... 2925.640976: kvm_entry: vcpu 0 L2 reads DR6, L1 disables DR interception CPU 0/KVM-7289 [023] d.... 2925.640980: kvm_exit: vcpu 0 reason DR_ACCESS info1 0x0000000000000216 CPU 0/KVM-7289 [023] d.... 2925.640983: kvm_entry: vcpu 0 CPU 0/KVM-7289 [023] d.... 2925.640983: <hack>: Set DRs, DR6 = 0xffff0ff0 L2 detects failure CPU 0/KVM-7289 [023] d.... 2925.640987: kvm_exit: vcpu 0 reason HLT L1 reads DR6 (confirms failure) CPU 0/KVM-7289 [023] d.... 2925.640990: <hack>: Sync DRs, DR6 = 0xffff0ff0 L0's view: ========== L2 reads DR6, arch.dr6 = 0 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_exit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit: vcpu 23 reason DR_ACCESS info1 0x0000000000000216 L2 => L1 nested VM-Exit CPU 23/KVM-5046 [001] ..... 3410.005610: kvm_nested_vmexit_inject: reason: DR_ACCESS ext_inf1: 0x0000000000000216 CPU 23/KVM-5046 [001] d.... 3410.005610: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_exit: vcpu 23 reason VMREAD CPU 23/KVM-5046 [001] d.... 3410.005611: kvm_entry: vcpu 23 CPU 23/KVM-5046 [001] d.... 3410. ---truncated---
5 issues left for the package maintainer to handle:
- CVE-2019-15213:
(postponed; to be fixed through a stable update)
An issue was discovered in the Linux kernel before 5.2.3. There is a use-after-free caused by a malicious USB device in the drivers/media/usb/dvb-usb/dvb-usb-init.c driver.
- CVE-2019-16089:
(postponed; to be fixed through a stable update)
An issue was discovered in the Linux kernel through 5.2.13. nbd_genl_status in drivers/block/nbd.c does not check the nla_nest_start_noflag return value.
- CVE-2019-19449:
(postponed; to be fixed through a stable update)
In the Linux kernel 5.0.21, mounting a crafted f2fs filesystem image can lead to slab-out-of-bounds read access in f2fs_build_segment_manager in fs/f2fs/segment.c, related to init_min_max_mtime in fs/f2fs/segment.c (because the second argument to get_seg_entry is not validated).
- CVE-2019-19814:
(needs triaging)
In the Linux kernel 5.0.21, mounting a crafted f2fs filesystem image can cause __remove_dirty_segment slab-out-of-bounds write access because an array is bounded by the number of dirty types (8) but the array index can exceed this.
- CVE-2019-20794:
(postponed; to be fixed through a stable update)
An issue was discovered in the Linux kernel 4.18 through 5.6.11 when unprivileged user namespaces are allowed. A user can create their own PID namespace, and mount a FUSE filesystem. Upon interaction with this FUSE filesystem, if the userspace component is terminated via a kill of the PID namespace's pid 1, it will result in a hung task, and resources being permanently locked up until system reboot. This can result in resource exhaustion.
You can find information about how to handle these issues in the security team's documentation.
3 ignored issues:
- CVE-2013-7445:
The Direct Rendering Manager (DRM) subsystem in the Linux kernel through 4.x mishandles requests for Graphics Execution Manager (GEM) objects, which allows context-dependent attackers to cause a denial of service (memory consumption) via an application that processes graphics data, as demonstrated by JavaScript code that creates many CANVAS elements for rendering by Chrome or Firefox.
- CVE-2018-12928:
In the Linux kernel 4.15.0, a NULL pointer dereference was discovered in hfs_ext_read_extent in hfs.ko. This can occur during a mount of a crafted hfs filesystem.
- CVE-2020-14304:
A memory disclosure flaw was found in the Linux kernel's ethernet drivers, in the way it read data from the EEPROM of the device. This flaw allows a local user to read uninitialized values from the kernel memory. The highest threat from this vulnerability is to confidentiality.